已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved Supervised Learning-Based Approach for Leaf and Wood Classification From LiDAR Point Clouds of Forests

点云 激光雷达 随机森林 计算机科学 遥感 人工智能 机器学习 模式识别(心理学) 地理
作者
Sruthi M. Krishna Moorthy,Kim Calders,Matheus Boni Vicari,Hans Verbeeck
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (5): 3057-3070 被引量:104
标识
DOI:10.1109/tgrs.2019.2947198
摘要

Accurately classifying 3-D point clouds into woody and leafy components has been an interest for applications in forestry and ecology including the better understanding of radiation transfer between canopy and atmosphere. The past decade has seen an increase in the methods attempting to classify leaves and wood in point clouds based on radiometric or geometric features. However, classification purely based on radiometric features is sensor-specific, and the method by which the local neighborhood of a point is defined affects the accuracy of classification based on geometric features. Here, we present a leaf-wood classification method combining geometrical features defined by radially bounded nearest neighbors at multiple spatial scales in a machine learning model. We compared the performance of three different machine learning models generated by the random forest (RF), XGBoost, and lightGBM algorithms. Using multiple spatial scales eliminates the need for an optimal neighborhood size selection and defining the local neighborhood by radially bounded nearest neighbors makes the method broadly applicable for point clouds of varying quality. We assessed the model performance at the individual tree- and plot-level on field data from tropical and deciduous forests, as well as on simulated point clouds. The method has an overall average accuracy of 94.2% on our data sets. For other data sets, the presented method outperformed the methods in literature in most cases without the need for additional postprocessing steps that are needed in most of the existing methods. We provide the entire framework as an open-source python package.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助will采纳,获得10
刚刚
善学以致用应助追寻地坛采纳,获得20
刚刚
只只发布了新的文献求助10
1秒前
仇谷槐发布了新的文献求助10
1秒前
御坂延珠发布了新的文献求助30
2秒前
小天狼星发布了新的文献求助10
3秒前
3秒前
7秒前
px关注了科研通微信公众号
8秒前
lulu完成签到 ,获得积分10
8秒前
科研通AI2S应助畅快访蕊采纳,获得10
8秒前
10秒前
御坂延珠完成签到,获得积分20
13秒前
哈哈带发布了新的文献求助30
14秒前
15秒前
17秒前
19秒前
科研通AI2S应助自然采纳,获得10
19秒前
LI发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
丁丁丁发布了新的文献求助10
22秒前
凌墨墨完成签到,获得积分10
23秒前
Csy发布了新的文献求助20
24秒前
彭小璐发布了新的文献求助10
24秒前
jessy发布了新的文献求助10
25秒前
阿恺发布了新的文献求助10
25秒前
Akim应助李绿真采纳,获得30
27秒前
BGRC131031完成签到,获得积分10
27秒前
仇谷槐完成签到,获得积分20
28秒前
28秒前
chcmuer完成签到,获得积分10
29秒前
29秒前
qwerty123发布了新的文献求助10
29秒前
29秒前
乐观寄真完成签到 ,获得积分10
30秒前
weiziho发布了新的文献求助10
31秒前
px发布了新的文献求助40
33秒前
微风418发布了新的文献求助20
34秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129961
求助须知:如何正确求助?哪些是违规求助? 2780706
关于积分的说明 7749763
捐赠科研通 2436010
什么是DOI,文献DOI怎么找? 1294449
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570