Improved Supervised Learning-Based Approach for Leaf and Wood Classification From LiDAR Point Clouds of Forests

点云 激光雷达 随机森林 计算机科学 遥感 人工智能 机器学习 模式识别(心理学) 地理
作者
Sruthi M. Krishna Moorthy,Kim Calders,Matheus Boni Vicari,Hans Verbeeck
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (5): 3057-3070 被引量:104
标识
DOI:10.1109/tgrs.2019.2947198
摘要

Accurately classifying 3-D point clouds into woody and leafy components has been an interest for applications in forestry and ecology including the better understanding of radiation transfer between canopy and atmosphere. The past decade has seen an increase in the methods attempting to classify leaves and wood in point clouds based on radiometric or geometric features. However, classification purely based on radiometric features is sensor-specific, and the method by which the local neighborhood of a point is defined affects the accuracy of classification based on geometric features. Here, we present a leaf-wood classification method combining geometrical features defined by radially bounded nearest neighbors at multiple spatial scales in a machine learning model. We compared the performance of three different machine learning models generated by the random forest (RF), XGBoost, and lightGBM algorithms. Using multiple spatial scales eliminates the need for an optimal neighborhood size selection and defining the local neighborhood by radially bounded nearest neighbors makes the method broadly applicable for point clouds of varying quality. We assessed the model performance at the individual tree- and plot-level on field data from tropical and deciduous forests, as well as on simulated point clouds. The method has an overall average accuracy of 94.2% on our data sets. For other data sets, the presented method outperformed the methods in literature in most cases without the need for additional postprocessing steps that are needed in most of the existing methods. We provide the entire framework as an open-source python package.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端己完成签到,获得积分20
刚刚
1秒前
阿湫发布了新的文献求助10
1秒前
2秒前
2秒前
坤坤完成签到,获得积分10
2秒前
3秒前
STUSSY完成签到,获得积分10
3秒前
wuhuofeng发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
coco完成签到,获得积分10
7秒前
lshao完成签到 ,获得积分10
8秒前
8秒前
zhou发布了新的文献求助30
9秒前
跋扈完成签到,获得积分10
11秒前
温柔翰发布了新的文献求助10
11秒前
11秒前
Jj发布了新的文献求助10
12秒前
ficus_min发布了新的文献求助10
12秒前
木子发布了新的文献求助10
13秒前
Galato发布了新的文献求助10
13秒前
寒冷哈密瓜完成签到 ,获得积分0
13秒前
大模型应助shen采纳,获得10
14秒前
123566完成签到,获得积分10
14秒前
hohn完成签到,获得积分10
14秒前
科研通AI2S应助bsn采纳,获得10
16秒前
LL发布了新的文献求助10
16秒前
张西西完成签到 ,获得积分10
17秒前
研友_ZAxj7n完成签到,获得积分20
19秒前
海上钢琴家完成签到,获得积分10
19秒前
日富一日完成签到,获得积分10
19秒前
大妙妙完成签到 ,获得积分10
19秒前
1111完成签到 ,获得积分10
20秒前
zhong完成签到,获得积分10
20秒前
Zsx完成签到,获得积分10
21秒前
22秒前
无辜念文完成签到,获得积分10
23秒前
Xx完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048