Improved Supervised Learning-Based Approach for Leaf and Wood Classification From LiDAR Point Clouds of Forests

点云 激光雷达 随机森林 计算机科学 遥感 人工智能 机器学习 模式识别(心理学) 地理
作者
Sruthi M. Krishna Moorthy,Kim Calders,Matheus Boni Vicari,Hans Verbeeck
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (5): 3057-3070 被引量:104
标识
DOI:10.1109/tgrs.2019.2947198
摘要

Accurately classifying 3-D point clouds into woody and leafy components has been an interest for applications in forestry and ecology including the better understanding of radiation transfer between canopy and atmosphere. The past decade has seen an increase in the methods attempting to classify leaves and wood in point clouds based on radiometric or geometric features. However, classification purely based on radiometric features is sensor-specific, and the method by which the local neighborhood of a point is defined affects the accuracy of classification based on geometric features. Here, we present a leaf-wood classification method combining geometrical features defined by radially bounded nearest neighbors at multiple spatial scales in a machine learning model. We compared the performance of three different machine learning models generated by the random forest (RF), XGBoost, and lightGBM algorithms. Using multiple spatial scales eliminates the need for an optimal neighborhood size selection and defining the local neighborhood by radially bounded nearest neighbors makes the method broadly applicable for point clouds of varying quality. We assessed the model performance at the individual tree- and plot-level on field data from tropical and deciduous forests, as well as on simulated point clouds. The method has an overall average accuracy of 94.2% on our data sets. For other data sets, the presented method outperformed the methods in literature in most cases without the need for additional postprocessing steps that are needed in most of the existing methods. We provide the entire framework as an open-source python package.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longhang应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
芬栀发布了新的文献求助10
1秒前
彭栋发布了新的文献求助10
2秒前
科目三应助YJ888采纳,获得10
2秒前
顾矜应助girl采纳,获得10
3秒前
徐哈哈完成签到,获得积分10
4秒前
4秒前
阿朱完成签到,获得积分10
4秒前
牛马研究生完成签到,获得积分20
5秒前
昭昭完成签到,获得积分10
5秒前
4566完成签到,获得积分10
6秒前
所所应助牛马码字员采纳,获得10
10秒前
昭昭发布了新的文献求助10
11秒前
君衡完成签到 ,获得积分10
12秒前
潇湘雪月发布了新的文献求助10
12秒前
14秒前
754完成签到,获得积分10
14秒前
SciGPT应助芒果柠檬采纳,获得10
15秒前
芬栀完成签到,获得积分10
16秒前
烂漫吐司完成签到,获得积分10
17秒前
18秒前
爱蕊咖完成签到 ,获得积分10
18秒前
odanfeonq完成签到,获得积分10
18秒前
遗忘完成签到,获得积分10
19秒前
20秒前
可爱的函函应助昭昭采纳,获得50
21秒前
23秒前
杜景婷完成签到 ,获得积分10
23秒前
卡卡罗特完成签到,获得积分10
23秒前
odanfeonq发布了新的文献求助10
23秒前
27秒前
俄而完成签到 ,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136