已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved Supervised Learning-Based Approach for Leaf and Wood Classification From LiDAR Point Clouds of Forests

点云 激光雷达 随机森林 计算机科学 遥感 人工智能 机器学习 模式识别(心理学) 地理
作者
Sruthi M. Krishna Moorthy,Kim Calders,Matheus Boni Vicari,Hans Verbeeck
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (5): 3057-3070 被引量:104
标识
DOI:10.1109/tgrs.2019.2947198
摘要

Accurately classifying 3-D point clouds into woody and leafy components has been an interest for applications in forestry and ecology including the better understanding of radiation transfer between canopy and atmosphere. The past decade has seen an increase in the methods attempting to classify leaves and wood in point clouds based on radiometric or geometric features. However, classification purely based on radiometric features is sensor-specific, and the method by which the local neighborhood of a point is defined affects the accuracy of classification based on geometric features. Here, we present a leaf-wood classification method combining geometrical features defined by radially bounded nearest neighbors at multiple spatial scales in a machine learning model. We compared the performance of three different machine learning models generated by the random forest (RF), XGBoost, and lightGBM algorithms. Using multiple spatial scales eliminates the need for an optimal neighborhood size selection and defining the local neighborhood by radially bounded nearest neighbors makes the method broadly applicable for point clouds of varying quality. We assessed the model performance at the individual tree- and plot-level on field data from tropical and deciduous forests, as well as on simulated point clouds. The method has an overall average accuracy of 94.2% on our data sets. For other data sets, the presented method outperformed the methods in literature in most cases without the need for additional postprocessing steps that are needed in most of the existing methods. We provide the entire framework as an open-source python package.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yx_cheng应助JiayinLiu采纳,获得50
1秒前
Li发布了新的文献求助10
3秒前
巫马婷冉完成签到,获得积分10
3秒前
sigrid给sigrid的求助进行了留言
6秒前
meow完成签到 ,获得积分10
8秒前
HRZ完成签到 ,获得积分0
10秒前
10秒前
10秒前
李健的粉丝团团长应助Li采纳,获得10
10秒前
qiu完成签到,获得积分10
11秒前
PAD完成签到,获得积分10
12秒前
Orange应助阿九采纳,获得10
13秒前
悠悠我心发布了新的文献求助30
13秒前
yuC完成签到,获得积分10
14秒前
Ziqingserra完成签到 ,获得积分10
16秒前
yuC发布了新的文献求助10
17秒前
红毛兔完成签到 ,获得积分10
19秒前
上官若男应助yuC采纳,获得30
19秒前
努力站桩的奶酪关注了科研通微信公众号
20秒前
哈哈完成签到 ,获得积分10
20秒前
21秒前
非蛋白呼吸商完成签到,获得积分10
22秒前
23秒前
muyangsiyuan发布了新的文献求助10
27秒前
31秒前
科研通AI2S应助GL采纳,获得10
31秒前
chujun_cai完成签到 ,获得积分10
31秒前
34秒前
36秒前
刺猬发布了新的文献求助10
36秒前
jiaaniu完成签到 ,获得积分10
39秒前
阿九发布了新的文献求助10
39秒前
40秒前
43秒前
45秒前
小二郎应助刺猬采纳,获得10
45秒前
小西米完成签到 ,获得积分10
46秒前
wanglejia完成签到,获得积分10
47秒前
50秒前
GL发布了新的文献求助10
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989972
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256042
捐赠科研通 3270884
什么是DOI,文献DOI怎么找? 1805093
邀请新用户注册赠送积分活动 882256
科研通“疑难数据库(出版商)”最低求助积分说明 809216