SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images

计算机科学 变更检测 像素 人工智能 编码器 光学(聚焦) 图层(电子) 深度学习 模式识别(心理学) 特征提取 计算机视觉 特征(语言学) 遥感 哲学 物理 化学 语言学 有机化学 地质学 光学 操作系统
作者
Sheng Fang,Kaiyu Li,J. Shao,Zhe Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:583
标识
DOI:10.1109/lgrs.2021.3056416
摘要

Change detection is an important task in remote sensing (RS) image analysis. It is widely used in natural disaster monitoring and assessment, land resource planning, and other fields. As a pixel-to-pixel prediction task, change detection is sensitive about the utilization of the original position information. Recent change detection methods always focus on the extraction of deep change semantic feature, but ignore the importance of shallow-layer information containing high-resolution and fine-grained features, this often leads to the uncertainty of the pixels at the edge of the changed target and the determination miss of small targets. In this letter, we propose a densely connected siamese network for change detection, namely SNUNet-CD (the combination of Siamese network and NestedUNet). SNUNet-CD alleviates the loss of localization information in the deep layers of neural network through compact information transmission between encoder and decoder, and between decoder and decoder. In addition, Ensemble Channel Attention Module (ECAM) is proposed for deep supervision. Through ECAM, the most representative features of different semantic levels can be refined and used for the final classification. Experimental results show that our method improves greatly on many evaluation criteria and has a better tradeoff between accuracy and calculation amount than other state-of-the-art (SOTA) change detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
942646364完成签到,获得积分10
1秒前
2秒前
阿圆发布了新的文献求助10
4秒前
Muhammad发布了新的文献求助10
4秒前
5秒前
8秒前
张雯思发布了新的文献求助30
8秒前
HotKid完成签到,获得积分10
10秒前
思源应助殷勤的哈密瓜采纳,获得10
11秒前
激情的一斩完成签到 ,获得积分10
13秒前
13秒前
猪丢了完成签到 ,获得积分10
14秒前
14秒前
15秒前
SciGPT应助玄月采纳,获得10
16秒前
17秒前
17秒前
体贴的凝芙完成签到,获得积分10
18秒前
18秒前
19秒前
vin应助科研通管家采纳,获得30
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
啷个里个洋完成签到,获得积分20
19秒前
咻咻发布了新的文献求助30
20秒前
20秒前
21秒前
李健的小迷弟应助Zeshan采纳,获得10
21秒前
高高芷发布了新的文献求助10
21秒前
23秒前
23秒前
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176