效应器
糖酵解
细胞生物学
免疫疗法
肿瘤微环境
癌症研究
平衡
葡萄糖摄取
新陈代谢
生物
免疫系统
化学
生物化学
免疫学
内分泌学
胰岛素
作者
McLane J. Watson,Paolo Vignali,Steven J. Mullett,Abigail Overacre-Delgoffe,Ronal Peralta,Stephanie Grebinoski,Ashley V. Menk,Natalie Rittenhouse,Kristin DePeaux,Ryan D. Whetstone,Dario A.A. Vignali,Timothy W. Hand,Amanda C. Poholek,Brett M. Morrison,Jeffrey D. Rothstein,Stacy G. Wendell,Greg M. Delgoffe
出处
期刊:Nature
[Springer Nature]
日期:2021-02-15
卷期号:591 (7851): 645-651
被引量:656
标识
DOI:10.1038/s41586-020-03045-2
摘要
Regulatory T (Treg) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells1,2. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME3, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function4–6. At the same time, Treg cells maintain a strong suppression of effector T cells within the TME7,8. As previous studies suggested that Treg cells possess a distinct metabolic profile from effector T cells9–11, we hypothesized that the altered metabolic landscape of the TME and increased activity of intratumoral Treg cells are linked. Here we show that Treg cells display broad heterogeneity in their metabolism of glucose within normal and transformed tissues, and can engage an alternative metabolic pathway to maintain suppressive function and proliferation. Glucose uptake correlates with poorer suppressive function and long-term instability, and high-glucose conditions impair the function and stability of Treg cells in vitro. Treg cells instead upregulate pathways involved in the metabolism of the glycolytic by-product lactic acid. Treg cells withstand high-lactate conditions, and treatment with lactate prevents the destabilizing effects of high-glucose conditions, generating intermediates necessary for proliferation. Deletion of MCT1—a lactate transporter—in Treg cells reveals that lactate uptake is dispensable for the function of peripheral Treg cells but required intratumorally, resulting in slowed tumour growth and an increased response to immunotherapy. Thus, Treg cells are metabolically flexible: they can use ‘alternative’ metabolites in the TME to maintain their suppressive identity. Further, our results suggest that tumours avoid destruction by not only depriving effector T cells of nutrients, but also metabolically supporting regulatory populations. The tumour microenvironment is low in glucose and high in the alternative metabolite lactate, which regulatory T cells are shown here to use, maintaining their ability to suppress effector immune cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI