摘要
Chapter 4 Phosphonated Nucleoside Analogues Roberto Romeo, Roberto Romeo Dipartimento Farmaco-Chimico, Università di Messina, Messina, ItalySearch for more papers by this authorCaterina Carnovale, Caterina Carnovale Dipartimento Farmaco-Chimico, Università di Messina, Messina, ItalySearch for more papers by this authorAntonio Rescifina, Antonio Rescifina Dipartimento di Scienze del Farmaco, Università di Catania, Catania, ItalySearch for more papers by this authorMaria Assunta Chiacchio, Maria Assunta Chiacchio Dipartimento di Scienze del Farmaco, Università di Catania, Catania, ItalySearch for more papers by this author Roberto Romeo, Roberto Romeo Dipartimento Farmaco-Chimico, Università di Messina, Messina, ItalySearch for more papers by this authorCaterina Carnovale, Caterina Carnovale Dipartimento Farmaco-Chimico, Università di Messina, Messina, ItalySearch for more papers by this authorAntonio Rescifina, Antonio Rescifina Dipartimento di Scienze del Farmaco, Università di Catania, Catania, ItalySearch for more papers by this authorMaria Assunta Chiacchio, Maria Assunta Chiacchio Dipartimento di Scienze del Farmaco, Università di Catania, Catania, ItalySearch for more papers by this author Book Editor(s):Pedro Merino, Pedro Merino Departamento de Síntesis y Estructura de Biomoléculas, y Departamento de Química Orgànica, Instituto de Sintesis y Catalisis Homogenea, Universidad de Zaragoza, CSIC, Zaragoza, Aragón, SpainSearch for more papers by this author First published: 15 February 2013 https://doi.org/10.1002/9781118498088.ch4Citations: 2 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Nucleoside analogues, in which the phosphoric ester group is replaced by the corresponding phosphonomethyl group, represent an important class of compounds endowed with potent antiviral activity. This modification confers on the molecule particular stability toward enzymatic degradation by phosphatases, making it possible to overcome the first limiting phosphorylation step. In this chapter, attention is directed to the carbocyclic and acyclic phosphonate nucleoside analogues. The various types of acyclic nucleoside phosphonates are illustrated. Acyclic phosphonated nucleosides (ANPs) have emerged as lead compounds. Their development has resulted in three approved drugs, and research on ANPs continues to provide new active derivatives. To achieve better oral uptake, the synthesis of prodrugs is often required. The increasing availability of prodrug options suggests the exploration of phosphonic acids in the search for new, efficient antiviral agents. References (a) Parker, W. B. Chem. Rev. 2009, 109, 2880–2893; 10.1021/cr900028p CASPubMedWeb of Science®Google Scholar (b) Liu, G.; Pranssen, E.; Fitch, E. F.; Warnew, E. J.Clin. Oncol. 1997, 15, 110–115; 10.1200/JCO.1997.15.1.110 CASPubMedWeb of Science®Google Scholar (c) Hishitsuka, H.; Shimma, N. In Modified Nucleosides in Biochemistry, Biotechnology and Medicine, P. Herdewijn, Ed., Wiley, Hoboken, NJ, 2008, pp. 587−600; Google Scholar (d) Takahashi, T.; Shimuzu, M.; Akinaga, S. Cancer Chemother. Pharmacol. 2002, 50, 1930–1201; 10.1007/s00280-002-0472-0 CASWeb of Science®Google Scholar (e) Thottassery, J. V.; Westbrook, L.; Someya, H.; Parker, W. B. Mol. Cancer Ther. 2006, 5, 400–410; 10.1158/1535-7163.MCT-05-0409 CASPubMedWeb of Science®Google Scholar (f) Miura, S.; Izuta, S. Current Drug Targets, 2004, 5, 191–195; 10.2174/1389450043490578 CASPubMedWeb of Science®Google Scholar (g) Klopfer, A.; Hasenjager, A.; Belka, C.; Schulze-Osthoff, K.; Dorken, B.; Daniel, P. T. Oncogene 2004, 23, 9408–9418. 10.1038/sj.onc.1207975 CASPubMedWeb of Science®Google Scholar (a) De Clercq, E. Rev. Med. Virol. 2009, 19, 287–299; 10.1002/rmv.624 CASPubMedWeb of Science®Google Scholar (b) De Clercq, E. Biochem. Pharmacol. 2007, 73, 911–922; 10.1016/j.bcp.2006.09.014 CASPubMedWeb of Science®Google Scholar (c) Cihlar, T.; LaFlamme, G.; Fisher, R.; Carey, A. C.; Vela, J. E.; Mackman, R.; Ray, A. S. Antimicrob. Agents Chemother. 2009, 53, 150–156; 10.1128/AAC.01183-08 CASPubMedWeb of Science®Google Scholar (d) Choo, H.; Beadle, J. R.; Kern, E. R.; Prichard, M. N.; Keith, K. A.; Hartlina, C. B.; Trahan, J.; Aldern, K. A.; Korba, B. E.; Hostetler, K. Y. Antimicrob. Agents Chemother. 2007, 51, 611–615; 10.1128/AAC.00444-06 CASPubMedWeb of Science®Google Scholar (e) Krcmerova, M.; Holý, A.; Piskala, A.; Masojidkova, M.; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R. J.Med. Chem. 2007, 50, 1069–1077; 10.1021/jm061281+ CASPubMedWeb of Science®Google Scholar (f) Lebeau, I.; Andrei, G.; Krecmerova, M.; De Clercq, E.; Holý, A.; Snoeck, R. Antimicrob. Agents Chemother. 2007, 51, 2268–2273. 10.1128/AAC.01422-06 CASPubMedWeb of Science®Google Scholar (a) Vanek, V.; Budesinsky, M.; Rinnova, M.; Rosemberg, I. Tetrahedron 2009, 65, 862–876; 10.1016/j.tet.2008.11.035 CASWeb of Science®Google Scholar (b) Kumamoto, H.; Topalis, D.; Broggi, J.; Pradere, U.; Roi, V.; Berteina-Raboin, S.; Nolan, S. P.; Deville-Bonne, D.; Andrei, G.; Snoeck, R.; Garin, D.; Grance, G. M.; Agrofoglio, L. A. Tetrahedron, 2008, 64, 3517–3526; 10.1016/j.tet.2008.01.140 CASWeb of Science®Google Scholar (c) Vrbkova, S.; Dracinsky, M.; Holý, A. Tetrahedron 2007, 63, 11391–11398. 10.1016/j.tet.2007.08.081 CASWeb of Science®Google Scholar Wedemeyer, H.; Hardtke, S.; Cornberg, M. Chemother. J. 2012, 21, 1–7. CASGoogle Scholar Elgemeie, G. H.; Zaghary, W. A.; Amin, K. M.; Nasr, T. M. Nucleosides Nucleotides Nucleic Acids 2005, 24, 1227–1247. 10.1081/NCN-200067421 CASPubMedWeb of Science®Google Scholar (a) Mironiuk-Puchalska, E.; Koszytkowska-Stawinska, M.; Sas, W.; De Clercq, E.; Naesens, L. Nucleosides Nucleotides Nucleic Acids 2012, 31, 72–84; 10.1080/15257770.2011.643848 CASPubMedWeb of Science®Google Scholar (b) Merino, P.; Tejero, T.; Unzurrunzaga, F. J.; Franco, S.; Chiacchio, U.; Saita, M. G.; Iannazzo, D.; Piperno, A.; Romeo, G. Tetrahedron Asymmetry, 2005, 16, 3865–3876; 10.1016/j.tetasy.2005.11.004 CASWeb of Science®Google Scholar (c) Chiacchio, U.; Rescifina, A.; Saita, M. G.; Iannazzo, D.; Romeo, G.; Mates, J. A.; Tejero, T.; Merino, P. J.Org. Chem. 2005, 70, 8991–9001. 10.1021/jo051572a CASPubMedWeb of Science®Google Scholar Franchetti, P.; Cappellacci, L.; Perlini, P.; Jayaram, H. N.; Butler, A.; Schneider, B. P.; Collart, F. R.; Huberman, E.; Grifantini, M. J. Med. Chem. 1998, 41, 1702–1707. 10.1021/jm970772e CASPubMedWeb of Science®Google Scholar Franchetti, P.; Cappellacci, L.; Marchetti, S.; Martini, C.; Costa, B.; Varani, K.; Borea, P. A.; Grifantini, M. Bioorg. Med. Chem. 2000, 8, 2367–2373. 10.1016/S0968-0896(00)00167-X CASPubMedWeb of Science®Google Scholar Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chem. Rev. 2010, 110, 3337−3370. 10.1021/cr800464r CASPubMedWeb of Science®Google Scholar Merino, P. Curr. Med. Chem. 2006, 13, 539–545. 10.2174/092986706776055779 CASPubMedWeb of Science®Google Scholar (a) Hirota, K.; Monguchi, Y.; Sajiki, H. In Recent Adv. Nucleosides, C. K. Chu, Ed., 2002, 57–70; Google Scholar (b) El Ashry, E. S. H.; Rashed, N. Curr. Org. Chem. 2000, 4, 609–651. 10.2174/1385272810004060609 CASWeb of Science®Google Scholar Littler, E.; Zhou, X.-X. In Compr. Med. Chem. II, J. B. Taylor; D. J. Triggle, Eds., 2006, 7, 295–327. Google Scholar (a) Wang, J.; Rwal, R. K.; Chu, C. K. In Med. Chem. Nucleic Acids, L.-H. Zhang; Z. Xi; J. Chattopadhyaya, Eds., 2011, 1–100; Google Scholar (b) Gundersen, L. Targets Heterocycl. Syst. 2008, 12, 85–119. CASWeb of Science®Google Scholar Sharma, P. L.; Nurpeisov, V.; Hernandez-Santiago, B.; Beltran, T.; Schinazi, R. F. Curr. Top. Med. Chem. 2004, 4, 895–919. 10.2174/1568026043388484 CASPubMedWeb of Science®Google Scholar (a) De Clercq, E.; Neyts, J.; Hand B. Exp. Pharmacol. 2009, 189, 53–84; 10.1007/978-3-540-79086-0_3 CASGoogle Scholar (b) Berdis, A. J. Biochemistry, 2008, 47, 8253–8260. 10.1021/bi801179f CASPubMedWeb of Science®Google Scholar Hutter M. C.; Helms V. ChemBioChem 2002, 3, 643−651. 10.1002/1439-7633(20020703)3:7<643::AID-CBIC643>3.0.CO;2-L CASPubMedWeb of Science®Google Scholar (a) Schneider, B.; Sarfati, R.; Deville-Bonne, D.; Veron, M. J.Bioenerg. Biomembr. 2000, 32, 317–324; 10.1023/A:1005501432684 CASPubMedWeb of Science®Google Scholar (b) Stein, D. S.; Moore, K. H. P. Pharmacotherapy 2001, 2137−2146; Google Scholar (c) Lascu, I.; Gonin, P. J.Bioenerg. Biomembr. 2000, 32, 237–246. 10.1023/A:1005532912212 CASPubMedWeb of Science®Google Scholar Miller, W.H. Miller,R. L. J. Biol. Chem. 1980, 255, 7204−7207; Biochem. Pharmacol. 1982, 31, 3879−3884. Google Scholar (a) Hecker, S. J.; Erion, M. D.J. Med.Chem. 2008, 51, 2328−2345; 10.1021/jm701260b CASPubMedWeb of Science®Google Scholar (b) Schultz, C. Bioorg. Med. Chem. 2003, 11, 885−898; 10.1016/S0968-0896(02)00552-7 CASPubMedWeb of Science®Google Scholar (c) Mackman, R. L., Cihlar, T. Annu. Rep. Med. Chem. 2004, 39, 305−321; 10.1016/S0065-7743(04)39023-8 CASWeb of Science®Google Scholar (d) He, G.-X.; Krise, J. P.; Oliyai, R.. In Prodrugs: Challenges and Rewards, Springer-Verlag, New York, 2007, pp. 223−264; Google Scholar (e) Ariza, M. E. Drug Des. Rev. 2005, 2, 273−387; Google Scholar (f) Congiatu, C.; McGuigan, C.; Jiang, W. G.; Davies, G.; Mason, M. D. Nucleosides Nucleotides Nucleic Acids, 2005, 24, 485−489. 10.1081/NCN-200061774 CASPubMedWeb of Science®Google Scholar (a) McGuigan, C.; Harris, S. A.; Daluge, S. M.; Gudmundsson, K. S.; McLean, E. W.; Burnette, T. C.; Marr, H.; Hazen, R. J. Med. Chem. 2005, 48, 3504−3515; 10.1021/jm0491400 CASPubMedWeb of Science®Google Scholar (b) Perrone, P.; Luoni, G. M.; Kelleher, M. R.; Daverio, F.; Angell; A.; Mulready, S.; Congiatu, C.; Rajyaguru, S.; Martin, J. A.; Leveque, V.; Le Pogam, S.; Najera, I.; Klumpp, K.; Smith, D. B.; McGuigan, C. J. Med. Chem. 2007, 50, 1840−1849; 10.1021/jm0613370 CASPubMedWeb of Science®Google Scholar (c) McGuigan, C.; Derudes, M.; Bugert, J. J.; Andrei, G.; Snoecke, R.; Balzarini, J. Bioorg. Med. Chem. Lett. 2008, 18, 4364−4367. 10.1016/j.bmcl.2008.06.069 CASPubMedWeb of Science®Google Scholar (a) De Clercq, E.; Holý, A. Nat. Res. Drug Discov. 2005, 4, 928–940; 10.1038/nrd1877 CASPubMedWeb of Science®Google Scholar (b) Deville-Bonne, D.; El Amri, C.; Meyer, P.; Chen, Y. X.; Agrofoglio, L. A.; Janin, J. Antiviral Res. 2010, 86, 101–120; 10.1016/j.antiviral.2010.02.001 CASPubMedWeb of Science®Google Scholar (c) De Clercq, E. Med. Res. Rev. 2009, 29, 571–610; 10.1002/med.20149 CASPubMedWeb of Science®Google Scholar (d) De Clercq, E. Antiviral Res. 2010, 85, 19–24; 10.1016/j.antiviral.2009.10.005 CASPubMedWeb of Science®Google Scholar (e) De Clercq, E. Biochem. Pharmacol. 2011, 82, 99–109. 10.1016/j.bcp.2011.03.027 CASPubMedWeb of Science®Google Scholar (a) Gallier, F.; Péyrottes, S.; Périgaud C. Tetrahedron, 2009, 65, 6039−6046; 10.1016/j.tet.2009.05.064 CASWeb of Science®Google Scholar (b) Meurillon, M.; Gallier, F.; Peyrottes, S.; Périgaud, C. Eur. J. Org. Chem. 2007, 925−933; Google Scholar (c) Gallier, F.; Alexandre, J. A. C.; El Amri, C.; Deville-Bonne, D.; Peyrotts, S.; Périgaud, C. Chem. Med. Chem. 2011, 6, 1094–1106. 10.1002/cmdc.201100068 CASWeb of Science®Google Scholar Wang, P.; Schinazi, R. Y.; Chu, C. K. Bioorg. Med. Chem. Lett. 1988, 8, 1585−1588. 10.1016/S0960-894X(98)00278-9 PubMedWeb of Science®Google Scholar Hah J. H.; Gil, J. M.; Oh, D. Y. Tetrahedron Lett. 1999, 40, 8235–8238. 10.1016/S0040-4039(99)01747-5 CASWeb of Science®Google Scholar Midura, W. H.; Krysiak, J. A.; Mikolajcvzyk, M. Tetrahedron Asymmetry 2003, 14, 1245–1249. 10.1016/S0957-4166(03)00211-8 CASWeb of Science®Google Scholar Choi, J.-R.; Cho, D.-G.; Roh, K. Y.; Hwang, J.-T.; Ahn, S.; Jang, H. S.; Cho, W.-Y.; Kim, K. W.; Cho, Y.-G.; Kim, J.; Kim, Y.-Z. J.Med. Chem. 2004, 47, 2864–2869. 10.1021/jm0305265 CASPubMedWeb of Science®Google Scholar Yokpmatsu, T.; Sato, M.; Abe, H.; Suemune, K.; Matsumoto, K.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Tetrahedron 1997, 53, 11297−11306. 10.1016/S0040-4020(97)00704-7 Web of Science®Google Scholar Yokomatsu, T.; Yamagishi, T.; Suemune, K.; Abe, H.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Tetrahedron 2000, 56, 7099–7108. 10.1016/S0040-4020(00)00620-7 CASWeb of Science®Google Scholar Guan, H.-G.; Qiu, Y.-L.; Ksebati, M. B.; Kern, E. R.; Zemlicka, J. Tetrahedron 2002, 58, 6047–6059. 10.1016/S0040-4020(02)00589-6 CASWeb of Science®Google Scholar Yan, Z.; Zhou, S.; Kern, E. R.; Zemlicka, J. Tetrahedron 2006, 62, 2608–2615. 10.1016/j.tet.2005.12.035 CASPubMedWeb of Science®Google Scholar Li, C.; Zemlicka, J. Nucleosides Nucleotides Nucleic Acids 2007, 26, 111−120. 10.1080/15257770601052349 CASPubMedWeb of Science®Google Scholar Lai, M.-T.; Liu, L.-D.; Liu, H.-W. J. Am. Chem. Soc. 1991, 113, 7388–7397. 10.1021/ja00019a040 CASWeb of Science®Google Scholar Yokomatsu, T.; Abe, H.; Sato, M.; Suemune, K.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Bioorg. Med. Chem. 1998, 6, 2495−2505. 10.1016/S0968-0896(98)80023-0 CASPubMedWeb of Science®Google Scholar Onishi, T.; Sekiyama, T.; Tsuji, T. Nucleosides Nucleotides Nucleic Acids 2005, 24, 1187–1197. 10.1081/NCN-200067409 CASPubMedWeb of Science®Google Scholar Kim, J. W.; Ko, O. H.; Hong, J. H. Arch. Pharm. Res. 2005, 28, 745–749. 10.1007/BF02977336 CASPubMedWeb of Science®Google Scholar Oh, C. H.; Hong, J. H. Arch. Pharm. 2006, 339, 505–512. Google Scholar Li, H.; Yoo, J. C.; Hong, J. H. Nucleosides Nucleotides Nucleic Acids 2011, 30, 945–960. 10.1080/15257770.2011.625374 CASPubMedWeb of Science®Google Scholar Kim, A.; Hong, J. H.; Oh, C. H. Nucleosides Nucleotides Nucleic Acids 2006, 25, 1399–1406. 10.1080/15257770600918920 CASWeb of Science®Google Scholar Bronson, J. J.; Ferrara, L. M.; Martin, J. C.; Mansuri, M. M. Bioorg. Med. Chem. Lett. 1992, 2, 685–690. 10.1016/S0960-894X(00)80391-1 CASWeb of Science®Google Scholar Coe, M. D.; Roberts, S. M.; Storer, R. J. Chem. Soc. Perkin Trans. 1 1992, 2695–2704. 10.1039/p19920002695 Web of Science®Google Scholar Elliot, R. D.; Rener, G. A.; Riorda, J. M.; Secrist, J. A., III; Bennett, L. L., Jr.; Parker, W. B.; Montgomery, J. A. J.Med. Chem. 1994, 37, 739–744. 10.1021/jm00032a006 PubMedWeb of Science®Google Scholar Wainwright, P.; Maddaford, A.; Bissel, R.; Fisher, R.; Leese, D.; Lund, A.; Runcie, K.; Dragovich, P. S.; Gonzales, J.; Kung, P.-P.; Middleton, D. S.; Pryde, D. C.; Stephenson, P. T.; Sutton, S. C. SynLett 2005, 5, 765–768. Google Scholar Boojamra, C. G.; Parrish, J. P.; Sperandio, D.; Gao, Y.; Petrakovsky, O. V.; Lee, S. K.; Markevitch, D. Y. Bioorg. Med. Chem. 2009, 17, 1739–1746. 10.1016/j.bmc.2008.12.028 CASPubMedWeb of Science®Google Scholar Yoo, J. C.; Lee, W.; Hong, J. H. Bull. Korean Chem. Soc. 2010, 31, 3348–3352. 10.5012/bkcs.2010.31.11.3348 CASWeb of Science®Google Scholar Yoo, L. L.; Baik, Y. C.; Lee, W.; Hong, J. E. Bull. Korean Chem. Soc. 2010, 31, 2514–2518. 10.5012/bkcs.2010.31.9.2514 CASWeb of Science®Google Scholar De Clercq, E.; Holý, A. J.Med. Chem. 1985, 28, 282−287. 10.1021/jm00381a004 CASPubMedWeb of Science®Google Scholar De Clercq, E.; Holý, A.; Rosenberg, T.; Sakuma, T.; Balzarini, J.; Maudgal, P. C. Nature 1986, 323, 464−467. 10.1038/323464a0 CASPubMedWeb of Science®Google Scholar Rosenberg, T.; Holý, A. Nucleic Acids Symp. Ser. 1987, 18, 33−36. Google Scholar Zakirova, B. F.; Shipitsyn, A. V.; Belanov, E. F.; Jasko, M. V. Bioorg. Med. Chem. Lett. 2004, 14, 3357–3360. 10.1016/j.bmcl.2003.12.107 CASPubMedWeb of Science®Google Scholar (a) Beadle, J. R.; Hostetler, K. Y. PCT Int. Appl. 2005087788, 22 Sep 2005, p. 44; Google Scholar (b) Beadle, J. R.; Wan, W. B.; Ciesla, S. L.; Keith, K. A.; Hartline, C.; Kern, E. R.; Hostetler, K. Y. J.Med. Chem. 2006, 49, 2010–2015. 10.1021/jm050473m CASPubMedWeb of Science®Google Scholar (a) De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, T.; Holý, A. Antiviral Res. 1987, 8, 261−267; 10.1016/S0166-3542(87)80004-9 CASPubMedWeb of Science®Google Scholar (b) Snoeck, R.; Sakuma, T.; De Clercq, E.; Rosenberg, T.; Holý, A. Antimicrob. Agents Chemother. 1988, 32, 1839−1842. 10.1128/AAC.32.12.1839 CASPubMedWeb of Science®Google Scholar Bronson, J. J.; Ghazzouly, I.; Hitchcock, M. J. M.; Webb, R. R.; Martin, J. C. J.Med. Chem. 1989, 32, 1457−1463. 10.1021/jm00127a010 CASPubMedWeb of Science®Google Scholar Beadle, J. R.; Hartline, C.; Aldern, K. A.; Rodriguez, N.; Harden, E.; Kern, E. R.; Hostetler, K. I. Antimicrob. Agents Chemother. 2002, 46, 2381−2386. 10.1128/AAC.46.8.2381-2386.2002 CASPubMedWeb of Science®Google Scholar Tichy, T.; Andrei, G.; Dracinsky, M.; Holý, A.; Balzarini, J.; Snoeck, R.; Krecmerova, M.; Bioorg. Med. Chem. 2011, 19, 3527−3539. 10.1016/j.bmc.2011.04.016 CASPubMedWeb of Science®Google Scholar Pawels, R.; Balzarini, J.; Schols, D.; Baba, M.; Desmyter, J. Antimicrob. Agents Chemother. 1988, 32, 1025−1030. 10.1128/AAC.32.7.1025 PubMedWeb of Science®Google Scholar Holý, A.; Dvorakova, H.; Masojidkova, M. Collect. Czech. Chem. Commun. 1995, 60, 1390−1393. 10.1135/cccc19951390 CASWeb of Science®Google Scholar Holý, A.; Masojidkova, M. Collect. Czech. Chem. Commun. 1995, 60, 1196−1199. 10.1135/cccc19951196 CASWeb of Science®Google Scholar Schultze, L. M.; Louie, M. S.; Postich, M. J.; Prisbe, E. J.; Rohloff, J. C.; Yu, R. H. Tetrahedron Lett. 1998, 39, 1853–1856. 10.1016/S0040-4039(98)00131-2 CASWeb of Science®Google Scholar Starrett, J. E.; Tortolani, D. R.; Hitchcock, M. J.; Martin, J. C.; Mansuri, M. M. Antiviral Res. 1992, 19, 267−273. 10.1016/0166-3542(92)90084-I CASPubMedWeb of Science®Google Scholar Cundy, K. C.; Fishback, J. A.; Shaw, J. P.; Lee, M. L.; Soike, K. F.; Visor, G. C. Pharm. Res. 1994, 11, 839−843. 10.1023/A:1018925723889 CASPubMedWeb of Science®Google Scholar (a) Hadziyannis, S. J.; Tassopoulos, N. C.; Heathcote, E. J.; Chang, T. T.; Kitis, G.; Rizzetto, M.; Marcelin, P.; Seng, G.; Goodman, Z.; Wulfsohn, M.; Xiong, S.; Fry, J.; Brosgart, C. L. N. Engl. J. Med. 2003, 348, 800−807; 10.1056/NEJMoa021812 CASPubMedWeb of Science®Google Scholar (b) Marcellin, P.; Chang, T. T.; Ling, S. G.; Tong, M. G.; Sievert, W.; Shiffman, M. L.; Jeffers, L.; Goodman, Z.; Wulfsohn, M. S.; Xiong, S.; Fry, J.; Brosgart, C. L. N. Engl. J. Med. 2003, 348, 808−816. 10.1056/NEJMoa020681 CASPubMedGoogle Scholar Kasthuri, M.; Chaloin, L.; Périgaud, C.; Peyrotttes, S. Tetrahedron Asymmetry 2011, 22, 1505−1511. 10.1016/j.tetasy.2011.08.010 CASPubMedWeb of Science®Google Scholar Balzarini, J.; Holý, A.; Jindrich, J.; Dvorakova, H.; Hao, Z.; Snoeck, R.; Herdewijn, P.; Jhons, D. G.; De Clercq, E. Proc. Natl. Acad. Sci. USA 1991, 88, 4961−4965. 10.1073/pnas.88.11.4961 CASPubMedWeb of Science®Google Scholar Balzarini, J.; Holý, A.; Jindrich, J.; Naesens, J.; Snoeck, R.; Schols, D.; De Clercq, E. Antimicrob. Agents Chemother. 1993, 37, 332−338. 10.1128/AAC.37.2.332 CASPubMedWeb of Science®Google Scholar Heijtink, R. A.; Kruining, J.; de Wilde, G. A.; Balzarini, J.; De Clercq, E.; Schalm, S. V. Antimicrob. Agents Chemother. 1994, 38, 2180−2182. 10.1128/AAC.38.9.2180 CASPubMedWeb of Science®Google Scholar Robbins, B. L.; Srinivas, R. V.; Kim, C.; Bischofberger, N.; Fridland, A. Antimicrob. Agents Chemother. 1998, 42, 612−617. 10.1128/AAC.42.3.612 CASPubMedWeb of Science®Google Scholar Naesens, L.; Bischofberger, N.; Augustijns, P.; Annaert, P.; Van den Mooter, G.; Arimilli, M. N.; Murty, N.; Kim, C. U.; De Clercq, E. Antimicrob. Agents Chemother. 1998, 42, 1568−1573. 10.1128/AAC.42.7.1568 CASPubMedWeb of Science®Google Scholar Lee, W. A.; He, G. X.; Eisenberg, E.; Cihlar, T.; Swaminathan, S.; Mulato, A.; Cundy, K. C. Antimicrob. Agents Chemother. 2005, 49, 1898−1906. 10.1128/AAC.49.5.1898-1906.2005 CASPubMedWeb of Science®Google Scholar Lanier, E. R.; Ptak, R. G.; Lampert, B. M.; Keilholz, L.; Hartman, T.; Buckheit, R. W., Jr.; Mankowski, M. K.; Osterling, M. C.; Almond, M. R.; Painter, G. R. Antimicrob. Agents Chemother. 2010, 54, 2901−2909. 10.1128/AAC.00068-10 CASPubMedWeb of Science®Google Scholar Holý, A.; Votruba, I.; Masojidkova, M.; Andrei, G.; Snoeck, R.; Naesens, L.; De Clercq, E.; Balzarini, J. J. Med. Chem. 2002, 45, 1918−1829. 10.1021/jm011095y CASPubMedWeb of Science®Google Scholar De Clercq, E.; Andrei, G.; Balzarini, J.; Leyssen, P.; Naesens, L.; Neyts, J.; Pannecouque, C.; Snoeck, R.; Ying, C.; Hockova, D.; Holý, A. Nucleosides Nucleotides Nucleic Acids 2005, 34, 331−341. 10.1081/NCN-200059772 CASWeb of Science®Google Scholar (a) Hochkova, D.; Holý, A.; Masojidkova, M.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J. J.Med. Chem. 2003, 46, 5064−5073; 10.1021/jm030932o CASPubMedWeb of Science®Google Scholar (b) Balzarini, J.; Pannecouque, C.; De Clercq, E.; Aquaro, S.; Perno, C.-F.; Egberink, H.; Holý, A. Antimicrob. Agents Chemother. 2002, 46, 2185−2193. 10.1128/AAC.46.7.2185-2193.2002 CASPubMedWeb of Science®Google Scholar Balzarini, J.; De Clercq, E.; Holý, A. Patent 2003/002580 A1, 22 Jan 2003, p. 83. Google Scholar Citing Literature Chemical Synthesis of Nucleoside Analogues ReferencesRelatedInformation