索波列夫空间
非线性系统
偏微分方程
数学
Korteweg–de Vries方程
巴拿赫空间
有界函数
傅里叶变换
傅里叶分析
希尔伯特空间
傅里叶级数
数学分析
物理
量子力学
作者
Rafael José Iório,Valéria de Magalhães Iorio
标识
DOI:10.1017/cbo9780511623745
摘要
This book was first published in 2001. It provides an introduction to Fourier analysis and partial differential equations and is intended to be used with courses for beginning graduate students. With minimal prerequisites the authors take the reader from fundamentals to research topics in the area of nonlinear evolution equations. The first part of the book consists of some very classical material, followed by a discussion of the theory of periodic distributions and the periodic Sobolev spaces. The authors then turn to the study of linear and nonlinear equations in the setting provided by periodic distributions. They assume only some familiarity with Banach and Hilbert spaces and the elementary properties of bounded linear operators. After presenting a fairly complete discussion of local and global well-posedness for the nonlinear Schrödinger and the Korteweg-de Vries equations, they turn their attention, in the two final chapters, to the non-periodic setting, concentrating on problems that do not occur in the periodic case.
科研通智能强力驱动
Strongly Powered by AbleSci AI