Materials discovery and design using machine learning

材料科学 纳米技术 系统工程 建筑工程 工程类
作者
Yue Liu,Tianlu Zhao,Wangwei Ju,Siqi Shi
出处
期刊:Journal of Materiomics [Elsevier BV]
卷期号:3 (3): 159-177 被引量:1043
标识
DOI:10.1016/j.jmat.2017.08.002
摘要

The screening of novel materials with good performance and the modelling of quantitative structure-activity relationships (QSARs), among other issues, are hot topics in the field of materials science. Traditional experiments and computational modelling often consume tremendous time and resources and are limited by their experimental conditions and theoretical foundations. Thus, it is imperative to develop a new method of accelerating the discovery and design process for novel materials. Recently, materials discovery and design using machine learning have been receiving increasing attention and have achieved great improvements in both time efficiency and prediction accuracy. In this review, we first outline the typical mode of and basic procedures for applying machine learning in materials science, and we classify and compare the main algorithms. Then, the current research status is reviewed with regard to applications of machine learning in material property prediction, in new materials discovery and for other purposes. Finally, we discuss problems related to machine learning in materials science, propose possible solutions, and forecast potential directions of future research. By directly combining computational studies with experiments, we hope to provide insight into the parameters that affect the properties of materials, thereby enabling more efficient and target-oriented research on materials discovery and design. Machine learning provides a new means of screening novel materials with good performance, developing quantitative structure-activity relationships (QSARs) and other models, predicting the properties of materials, discovering new materials and performing other materials-relateds studies. • The typical mode of and basic procedures for applying machine learning in materials science are summarized and discussed. • For various points of application, the machine learning methods used for different purposes are comprehensively reviewed. • Existing problems are discussed, possible solutions are proposed and potential directions of future research are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟德完成签到,获得积分10
1秒前
结实青文完成签到 ,获得积分10
5秒前
www发布了新的文献求助30
5秒前
散装冰块应助大胆的以彤采纳,获得10
6秒前
生信小菜鸟完成签到 ,获得积分10
10秒前
10秒前
13秒前
13秒前
theThreeMagi完成签到 ,获得积分10
13秒前
丘比特应助感动归尘采纳,获得10
15秒前
成就小丸子完成签到,获得积分10
16秒前
共享精神应助tang采纳,获得10
17秒前
Jian关注了科研通微信公众号
17秒前
等等发布了新的文献求助10
19秒前
20秒前
碧蓝的安露完成签到 ,获得积分10
21秒前
汉堡包应助毛毛采纳,获得10
21秒前
23秒前
23秒前
健忘怜雪完成签到,获得积分10
24秒前
香蕉觅云应助lz采纳,获得10
26秒前
28秒前
28秒前
dpk发布了新的文献求助10
28秒前
阳和启蛰发布了新的文献求助10
29秒前
30秒前
30秒前
毛毛完成签到,获得积分10
32秒前
tang发布了新的文献求助10
34秒前
35秒前
CHENCHENG完成签到 ,获得积分10
35秒前
毛毛发布了新的文献求助10
36秒前
17完成签到 ,获得积分10
36秒前
阳和启蛰完成签到,获得积分10
36秒前
36秒前
36秒前
大梦一场完成签到 ,获得积分20
37秒前
lee完成签到,获得积分10
37秒前
38秒前
bbwscihubsir发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4549266
求助须知:如何正确求助?哪些是违规求助? 3979793
关于积分的说明 12321733
捐赠科研通 3648625
什么是DOI,文献DOI怎么找? 2009373
邀请新用户注册赠送积分活动 1044805
科研通“疑难数据库(出版商)”最低求助积分说明 933280