Materials discovery and design using machine learning

材料科学 纳米技术 系统工程 建筑工程 工程类
作者
Yue Liu,Tianlu Zhao,Wangwei Ju,Siqi Shi
出处
期刊:Journal of Materiomics [Elsevier BV]
卷期号:3 (3): 159-177 被引量:1043
标识
DOI:10.1016/j.jmat.2017.08.002
摘要

The screening of novel materials with good performance and the modelling of quantitative structure-activity relationships (QSARs), among other issues, are hot topics in the field of materials science. Traditional experiments and computational modelling often consume tremendous time and resources and are limited by their experimental conditions and theoretical foundations. Thus, it is imperative to develop a new method of accelerating the discovery and design process for novel materials. Recently, materials discovery and design using machine learning have been receiving increasing attention and have achieved great improvements in both time efficiency and prediction accuracy. In this review, we first outline the typical mode of and basic procedures for applying machine learning in materials science, and we classify and compare the main algorithms. Then, the current research status is reviewed with regard to applications of machine learning in material property prediction, in new materials discovery and for other purposes. Finally, we discuss problems related to machine learning in materials science, propose possible solutions, and forecast potential directions of future research. By directly combining computational studies with experiments, we hope to provide insight into the parameters that affect the properties of materials, thereby enabling more efficient and target-oriented research on materials discovery and design. Machine learning provides a new means of screening novel materials with good performance, developing quantitative structure-activity relationships (QSARs) and other models, predicting the properties of materials, discovering new materials and performing other materials-relateds studies. • The typical mode of and basic procedures for applying machine learning in materials science are summarized and discussed. • For various points of application, the machine learning methods used for different purposes are comprehensively reviewed. • Existing problems are discussed, possible solutions are proposed and potential directions of future research are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路哈哈完成签到,获得积分10
1秒前
4秒前
Marita发布了新的文献求助10
4秒前
5秒前
认真飞瑶发布了新的文献求助10
6秒前
6秒前
czy0818发布了新的文献求助10
6秒前
7秒前
8秒前
微不足道完成签到,获得积分10
8秒前
Marita完成签到,获得积分10
10秒前
梦哈哈发布了新的文献求助10
11秒前
微不足道发布了新的文献求助10
11秒前
英姑应助犹豫的铅笔采纳,获得10
12秒前
shirai发布了新的文献求助10
12秒前
华仔完成签到,获得积分10
13秒前
仰望星空发布了新的文献求助10
13秒前
13秒前
飞呀发布了新的文献求助30
14秒前
hellomoon完成签到 ,获得积分10
14秒前
噜啦啦啦发布了新的文献求助10
16秒前
17秒前
SYLH应助俏皮的白柏采纳,获得10
17秒前
18秒前
当归完成签到,获得积分10
18秒前
田様应助虚心的芹采纳,获得10
18秒前
18秒前
灿cancan发布了新的文献求助10
19秒前
隐形的绮烟完成签到,获得积分10
19秒前
liu完成签到,获得积分10
20秒前
20秒前
Shine完成签到 ,获得积分10
20秒前
活力青筠发布了新的文献求助10
21秒前
Cassie发布了新的文献求助10
22秒前
23秒前
感动新烟发布了新的文献求助10
23秒前
24秒前
医者发布了新的文献求助10
24秒前
Jon发布了新的文献求助10
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794