电化学
氧化还原
电极
阳离子聚合
氧气
过渡金属
材料科学
电子
金属
电池(电)
原子轨道
化学工程
纳米技术
化学
化学物理
物理化学
催化作用
热力学
高分子化学
物理
冶金
功率(物理)
有机化学
工程类
量子力学
生物化学
作者
Arnaud J. Perez,Quentin Jacquet,Dmitry Batuk,Antonella Iadecola,Matthieu Saubanère,Gwenaëlle Rousse,Dominique Larcher,Hervé Vezin,Marie‐Liesse Doublet,Jean‐Marie Tarascon
出处
期刊:Nature Energy
[Springer Nature]
日期:2017-12-06
卷期号:2 (12): 954-962
被引量:153
标识
DOI:10.1038/s41560-017-0042-7
摘要
The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g–1 thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material’s instability against O2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material’s maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials. Anionic redox provides extra capacity for battery electrodes, but it is challenging to realize its full potential. Tarascon and colleagues report a record-high reversible capacity of 3.5 electrons per Ir in a Li3IrO4 phase, and discuss the importance of increasing the ratio of oxygen versus transition metal.
科研通智能强力驱动
Strongly Powered by AbleSci AI