材料科学
溶胶凝胶
兴奋剂
退火(玻璃)
热致变色
透射率
薄膜
柠檬酸
化学工程
草酸
钒
纳米技术
无机化学
化学
有机化学
光电子学
复合材料
冶金
工程类
作者
Guoping Pan,Jinhua Yin,Keli Ji,Xiang Li,Xingwang Cheng,Haibo Jin,Jiping Liu
标识
DOI:10.1038/s41598-017-05229-9
摘要
Abstract Tungsten-doped VO 2 thin films have been synthesized by a modified sol–gel process and followed by a post annealing. Vanadium pentoxide and tungstic acid as raw materials with the addition of hydrogen peroxide, concentrated hydrochloric acid (catalyst) and oxalic acid used as reducing agent were reacted in isobutanol. Finally, the uniform sol of vanadyl oxalate in isobutanol solvent was obtained as precursor. Detailed study suggested that W doped in VO 2 introduces additional electron carriers and induces the formation of V 3+ . Post annealing under vacuum promotes the releasing of chemical stress and generates oxygen vacancies in the samples. Temperature dependent transmittance study revealed that the releasing of chemical stress and deliberately introducing oxygen vacancies in W-doped VO 2 films have positive effects on enhancing its switching ability in the infrared transmittance as the metal-insulator transition (MIT) occurs. The largest switching of transmittance was obtained about 48% in the infrared range at 43 °C in 1.5%W doped VO 2 films, which is significantly larger than the reported ones. The findings in this work open a new way to synthesize the novel and thermochromic W doped VO 2 films with facility and low cost. Therefore, it has extensive application to construct smart windows and electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI