反褶积
计算机科学
反问题
光学
雷达
图像分辨率
激光器
凸优化
算法
激光雷达
遥感
核(代数)
正规化(语言学)
盲反褶积
物理
分辨率(逻辑)
人工智能
雷达成像
数学优化
光子
超分辨率
高分辨率
数学
正多边形
数学分析
几何学
组合数学
作者
Dongeek Shin,Jeffrey H. Shapiro,Vivek K Goyal
出处
期刊:Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
日期:2017-08-24
被引量:4
摘要
The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI