纳米颗粒
材料科学
介孔二氧化硅
纳米技术
介孔材料
纳米线
化学工程
胶束
表面改性
化学
有机化学
催化作用
工程类
水溶液
作者
Wenxing Wang,Peiyuan Wang,Xueting Tang,Ahmed A. Elzatahry,Shuwen Wang,Daifallah Al‐Dahyan,Mengyao Zhao,Chi Yao,Chin‐Te Hung,Xiaohang Zhu,Tiancong Zhao,Xiaomin Li,Fan Zhang,Dongyuan Zhao
出处
期刊:ACS central science
[American Chemical Society]
日期:2017-07-26
卷期号:3 (8): 839-846
被引量:240
标识
DOI:10.1021/acscentsci.7b00257
摘要
The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles' rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (∼60–160 nm), tubular length (∼6–70 nm), and outer diameter (∼6–10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, <5 min), unique internalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core–shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI