Tissue microstructure estimation using a deep network inspired by a dictionary-based framework

计算机科学 磁共振弥散成像 微观结构 人工智能 算法 方向(向量空间) 功能(生物学) 扩散 模式识别(心理学) 数学 物理 材料科学 磁共振成像 几何学 医学 进化生物学 生物 热力学 放射科 冶金
作者
Chuyang Ye
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:42: 288-299 被引量:32
标识
DOI:10.1016/j.media.2017.09.001
摘要

Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN+ allows incorporation of neighborhood information by inserting a stage with learned weights before the MEDN structure, where the diffusion signals in the neighborhood of a voxel are processed. The weights in MEDN or MEDN+ are jointly learned from training samples that are acquired with diffusion gradients densely sampling the q-space. We performed MEDN and MEDN+ on brain dMRI scans, where two shells each with 30 gradient directions were used, and measured their accuracy with respect to the gold standard. Results demonstrate that the proposed networks outperform the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
皛燚完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
姜宇麒发布了新的文献求助10
3秒前
winfan完成签到 ,获得积分10
3秒前
3秒前
钱钱发布了新的文献求助10
4秒前
4秒前
搞怪世界完成签到,获得积分10
5秒前
5秒前
aertom完成签到,获得积分10
5秒前
5秒前
hk完成签到,获得积分20
5秒前
[刘小婷]完成签到,获得积分10
6秒前
烟花应助要减肥的书萱采纳,获得10
6秒前
大力的夏山完成签到,获得积分10
7秒前
andurance发布了新的文献求助10
7秒前
搞怪世界发布了新的文献求助10
8秒前
路路发布了新的文献求助10
8秒前
8秒前
胡萝卜和小灰兔完成签到 ,获得积分10
9秒前
lyy66964193完成签到,获得积分10
10秒前
Source完成签到,获得积分20
11秒前
karwen发布了新的文献求助10
11秒前
汉堡包应助白日梦想家采纳,获得10
12秒前
今后应助忘响采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
乐观的大白菜真实的钥匙完成签到,获得积分10
14秒前
xia发布了新的文献求助30
14秒前
Jasper应助盏盏采纳,获得30
17秒前
如初发布了新的文献求助30
17秒前
liuguanfeng发布了新的文献求助10
17秒前
paul发布了新的文献求助150
18秒前
ding发布了新的文献求助10
19秒前
20秒前
王小白发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091