亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tissue microstructure estimation using a deep network inspired by a dictionary-based framework

计算机科学 磁共振弥散成像 微观结构 人工智能 算法 方向(向量空间) 功能(生物学) 扩散 模式识别(心理学) 数学 物理 材料科学 磁共振成像 几何学 医学 进化生物学 生物 热力学 放射科 冶金
作者
Chuyang Ye
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:42: 288-299 被引量:32
标识
DOI:10.1016/j.media.2017.09.001
摘要

Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN+ allows incorporation of neighborhood information by inserting a stage with learned weights before the MEDN structure, where the diffusion signals in the neighborhood of a voxel are processed. The weights in MEDN or MEDN+ are jointly learned from training samples that are acquired with diffusion gradients densely sampling the q-space. We performed MEDN and MEDN+ on brain dMRI scans, where two shells each with 30 gradient directions were used, and measured their accuracy with respect to the gold standard. Results demonstrate that the proposed networks outperform the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anthea完成签到 ,获得积分10
3秒前
方琼燕完成签到 ,获得积分10
13秒前
852应助郜南烟采纳,获得10
29秒前
jeff完成签到,获得积分10
41秒前
香蕉觅云应助郜南烟采纳,获得10
1分钟前
李友健完成签到 ,获得积分10
1分钟前
2分钟前
严珍珍完成签到 ,获得积分10
2分钟前
科研通AI2S应助chenyuns采纳,获得20
2分钟前
2分钟前
2分钟前
Milton_z完成签到 ,获得积分10
3分钟前
4分钟前
辛勤幻梅发布了新的文献求助10
4分钟前
传奇完成签到 ,获得积分10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
简Moild发布了新的文献求助10
6分钟前
6分钟前
6分钟前
Z颖123发布了新的文献求助10
6分钟前
liujie完成签到,获得积分10
6分钟前
Z颖123完成签到,获得积分10
6分钟前
科研通AI2S应助liujie采纳,获得10
6分钟前
xiw完成签到,获得积分10
6分钟前
7分钟前
7分钟前
英姑应助Benhnhk21采纳,获得10
7分钟前
充电宝应助chenyuns采纳,获得20
7分钟前
8分钟前
8分钟前
Benhnhk21发布了新的文献求助10
8分钟前
充电宝应助科研通管家采纳,获得10
8分钟前
小晖晖完成签到,获得积分10
9分钟前
Haydeehu完成签到,获得积分10
9分钟前
9分钟前
10分钟前
宣若剑发布了新的文献求助10
10分钟前
香蕉觅云应助科研通管家采纳,获得10
10分钟前
1206425219密完成签到,获得积分10
11分钟前
杜林完成签到 ,获得积分10
11分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826620
捐赠科研通 2454573
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527