Tissue microstructure estimation using a deep network inspired by a dictionary-based framework

计算机科学 磁共振弥散成像 微观结构 人工智能 算法 方向(向量空间) 功能(生物学) 扩散 模式识别(心理学) 数学 物理 材料科学 磁共振成像 几何学 医学 进化生物学 生物 热力学 放射科 冶金
作者
Chuyang Ye
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:42: 288-299 被引量:32
标识
DOI:10.1016/j.media.2017.09.001
摘要

Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN+ allows incorporation of neighborhood information by inserting a stage with learned weights before the MEDN structure, where the diffusion signals in the neighborhood of a voxel are processed. The weights in MEDN or MEDN+ are jointly learned from training samples that are acquired with diffusion gradients densely sampling the q-space. We performed MEDN and MEDN+ on brain dMRI scans, where two shells each with 30 gradient directions were used, and measured their accuracy with respect to the gold standard. Results demonstrate that the proposed networks outperform the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两酒窝完成签到,获得积分10
1秒前
七十三度完成签到,获得积分10
1秒前
1秒前
嘟嘟金子发布了新的文献求助10
2秒前
称心砖头发布了新的文献求助10
2秒前
2秒前
哈哈完成签到,获得积分10
3秒前
今后应助小宇采纳,获得10
3秒前
领导范儿应助Khr1stINK采纳,获得10
3秒前
汉堡包应助羊羊采纳,获得10
3秒前
KX发布了新的文献求助10
4秒前
落晨发布了新的文献求助10
4秒前
4秒前
geigeigei完成签到,获得积分10
4秒前
8564523发布了新的文献求助10
4秒前
5秒前
靓丽涵易完成签到,获得积分10
5秒前
5秒前
WHL完成签到,获得积分10
6秒前
JiaqiLiu完成签到,获得积分10
6秒前
6秒前
orixero应助charon采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
可爱的函函应助娜行采纳,获得10
7秒前
鱼圆杂铺完成签到 ,获得积分10
7秒前
Danielle完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
呆呆发布了新的文献求助10
8秒前
只只完成签到,获得积分20
8秒前
WNL发布了新的文献求助10
9秒前
彭珊完成签到,获得积分10
9秒前
Rocky发布了新的文献求助10
9秒前
Charon922完成签到,获得积分10
9秒前
9秒前
酒尚温发布了新的文献求助50
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678