Tissue microstructure estimation using a deep network inspired by a dictionary-based framework

计算机科学 磁共振弥散成像 微观结构 人工智能 算法 方向(向量空间) 功能(生物学) 扩散 模式识别(心理学) 数学 物理 材料科学 磁共振成像 几何学 医学 进化生物学 生物 热力学 放射科 冶金
作者
Chuyang Ye
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:42: 288-299 被引量:32
标识
DOI:10.1016/j.media.2017.09.001
摘要

Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN+ allows incorporation of neighborhood information by inserting a stage with learned weights before the MEDN structure, where the diffusion signals in the neighborhood of a voxel are processed. The weights in MEDN or MEDN+ are jointly learned from training samples that are acquired with diffusion gradients densely sampling the q-space. We performed MEDN and MEDN+ on brain dMRI scans, where two shells each with 30 gradient directions were used, and measured their accuracy with respect to the gold standard. Results demonstrate that the proposed networks outperform the competing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诗瑜发布了新的文献求助10
刚刚
刚刚
科研通AI6应助guan采纳,获得10
刚刚
刚刚
1秒前
2秒前
2秒前
3秒前
善学以致用应助小钻风采纳,获得10
3秒前
3秒前
火星上的电话完成签到,获得积分10
3秒前
东小府摸鱼小哥完成签到,获得积分10
3秒前
4秒前
5秒前
XIXI发布了新的文献求助10
5秒前
轩辕源智发布了新的文献求助10
5秒前
blame完成签到,获得积分10
6秒前
砡君发布了新的文献求助10
6秒前
科目三应助蔚然然采纳,获得10
6秒前
追光者完成签到,获得积分10
6秒前
xy发布了新的文献求助10
6秒前
HY发布了新的文献求助20
6秒前
ayin发布了新的文献求助10
6秒前
7秒前
吴琼完成签到,获得积分20
7秒前
尧开完成签到,获得积分10
7秒前
胡聪慧完成签到 ,获得积分10
7秒前
李曼欣完成签到,获得积分10
7秒前
7秒前
ywhywh50发布了新的文献求助10
9秒前
乐in林发布了新的文献求助10
9秒前
syr发布了新的文献求助10
9秒前
9秒前
浮游应助bbanshan采纳,获得10
9秒前
吴琼发布了新的文献求助10
10秒前
思源应助好香的奶油饼干采纳,获得10
10秒前
情怀应助kids采纳,获得10
10秒前
Orange应助念安采纳,获得30
11秒前
含蓄战斗机完成签到,获得积分10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262