Tissue microstructure estimation using a deep network inspired by a dictionary-based framework

计算机科学 磁共振弥散成像 微观结构 人工智能 算法 方向(向量空间) 功能(生物学) 扩散 模式识别(心理学) 数学 物理 材料科学 磁共振成像 几何学 医学 进化生物学 生物 热力学 放射科 冶金
作者
Chuyang Ye
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:42: 288-299 被引量:32
标识
DOI:10.1016/j.media.2017.09.001
摘要

Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN+ allows incorporation of neighborhood information by inserting a stage with learned weights before the MEDN structure, where the diffusion signals in the neighborhood of a voxel are processed. The weights in MEDN or MEDN+ are jointly learned from training samples that are acquired with diffusion gradients densely sampling the q-space. We performed MEDN and MEDN+ on brain dMRI scans, where two shells each with 30 gradient directions were used, and measured their accuracy with respect to the gold standard. Results demonstrate that the proposed networks outperform the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助忆枫采纳,获得10
刚刚
安详凡发布了新的文献求助10
刚刚
杜兰特发布了新的文献求助10
刚刚
wanwan应助无奈的幻雪采纳,获得10
刚刚
马关维发布了新的文献求助10
2秒前
2秒前
zhhua完成签到,获得积分10
3秒前
3秒前
zzz完成签到 ,获得积分10
4秒前
GT发布了新的文献求助10
5秒前
5秒前
桐桐应助社牛小柯采纳,获得10
6秒前
6秒前
谢建平发布了新的文献求助10
7秒前
英俊的铭应助mpenny77采纳,获得10
7秒前
尘南浔完成签到,获得积分10
8秒前
Bethune发布了新的文献求助10
8秒前
上课呢完成签到 ,获得积分10
9秒前
孙燕应助开心牛油果采纳,获得10
9秒前
戴志坚发布了新的文献求助10
10秒前
11秒前
云下完成签到 ,获得积分10
11秒前
13秒前
鹿鹿完成签到,获得积分10
15秒前
王子安应助loski采纳,获得10
15秒前
李健的小迷弟应助loski采纳,获得10
15秒前
领导范儿应助loski采纳,获得10
15秒前
斯文败类应助Bethune采纳,获得10
15秒前
17秒前
爆米花应助顺心若魔采纳,获得10
17秒前
高桥凉介完成签到 ,获得积分10
20秒前
隐形曼青应助木木采纳,获得10
21秒前
pluto应助nicewink采纳,获得10
21秒前
爆米花应助loski采纳,获得10
21秒前
orixero应助loski采纳,获得10
21秒前
小蘑菇应助loski采纳,获得10
21秒前
SciGPT应助loski采纳,获得10
21秒前
领导范儿应助loski采纳,获得10
22秒前
充电宝应助loski采纳,获得10
22秒前
斯文败类应助loski采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425