催化作用
化学
钴
分子
阳离子聚合
纳米颗粒
乙胺
结晶学
立体化学
无机化学
高分子化学
物理化学
材料科学
纳米技术
有机化学
作者
Konstantin Khivantsev,Alessandro Biancardi,Mahdi Fathizadeh,Fahad Almalki,Job L. Grant,Huynh Ngoc Tien,Abolfazl Shakouri,Douglas A. Blom,Thomas M. Makris,John R. Regalbuto,Marco Caricato,Miao Yu
出处
期刊:Chemcatchem
[Wiley]
日期:2017-10-04
卷期号:10 (4): 736-742
被引量:9
标识
DOI:10.1002/cctc.201701268
摘要
Abstract Catalytic N−H bond activation and breaking by well‐defined molecular complexes or their heterogeneous analogues is considered to be a challenge in chemical science. Metal(0) nanoparticles catalytically decompose NH 3 ; they are, however, ill defined and contain a range of contiguous metal sites with varying coordination numbers and catalytic properties. So far, no well‐defined/molecular M n + ‐containing materials have been demonstrated to break strong N−H bonds catalytically, especially in NH 3 , the molecule with the strongest N−H bonds. Recently, noncatalytic activation of NH 3 with the liberation of molecular H 2 on an organometallic molybdenum complex was demonstrated. Herein, we show the catalytic activation and breaking of N−H bonds on a singly dispersed, well‐defined, and highly thermally resistant (even under reducing environments) Co II 1 O 4 site of a heterogeneous catalyst for organic (ethylamine) and inorganic (NH 3 , with the formation of N 2 and H 2 ) molecules. The single‐site material serves as a viable precursor to ultrasmall (2.7 nm and less) silica‐supported cobalt nanoparticles; thus, we directly compare the activity of isolated cationic cobalt sites with small cobalt nanoparticles. Density functional theory (DFT) calculations suggest a unique mechanism involving breaking of the N−H bonds in NH 3 and N−N coupling steps taking place on a Co 1 O 4 site with the formation of N 2 H 4 , which then decomposes to H 2 and N 2 H 2 ; N 2 H 2 subsequently decomposes to H 2 and N 2 . In contrast, Co 1 N 4 sites are not catalytically active, which implies that the ligand environment around a single atom of a heterogeneous catalyst largely controls reactivity. This may open a new chapter for the design of well‐defined heterogeneous materials for N−H bond‐activation reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI