计算机科学
航程(航空)
人工神经网络
人工智能
支持向量机
频道(广播)
机器学习
领域(数学)
随机子空间法
电信
数学
工程类
航空航天工程
纯数学
作者
Haiqiang Niu,Emma Ozanich,Peter Gerstoft
出处
期刊:Journal of the Acoustical Society of America
[Acoustical Society of America]
日期:2017-11-01
卷期号:142 (5): EL455-EL460
被引量:120
摘要
Machine learning classifiers are shown to outperform conventional matched field processing for a deep water (600 m depth) ocean acoustic-based ship range estimation problem in the Santa Barbara Channel Experiment when limited environmental information is known. Recordings of three different ships of opportunity on a vertical array were used as training and test data for the feed-forward neural network and support vector machine classifiers, demonstrating the feasibility of machine learning methods to locate unseen sources. The classifiers perform well up to 10 km range whereas the conventional matched field processing fails at about 4 km range without accurate environmental information.
科研通智能强力驱动
Strongly Powered by AbleSci AI