亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Driving behavior recognition using EEG data from a simulated car-following experiment

脑电图 线性判别分析 支持向量机 模式识别(心理学) 人工智能 计算机科学 分类器(UML) 特征提取 驾驶模拟器 工程类 心理学 精神科
作者
Liu Yang,Rui Ma,Michael Zhang,Wei Guan,Shixiong Jiang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:116: 30-40 被引量:147
标识
DOI:10.1016/j.aap.2017.11.010
摘要

Driving behavior recognition is the foundation of driver assistance systems, with potential applications in automated driving systems. Most prevailing studies have used subjective questionnaire data and objective driving data to classify driving behaviors, while few studies have used physiological signals such as electroencephalography (EEG) to gather data. To bridge this gap, this paper proposes a two-layer learning method for driving behavior recognition using EEG data. A simulated car-following driving experiment was designed and conducted to simultaneously collect data on the driving behaviors and EEG data of drivers. The proposed learning method consists of two layers. In Layer I, two-dimensional driving behavior features representing driving style and stability were selected and extracted from raw driving behavior data using K-means and support vector machine recursive feature elimination. Five groups of driving behaviors were classified based on these two-dimensional driving behavior features. In Layer II, the classification results from Layer I were utilized as inputs to generate a k-Nearest-Neighbor classifier identifying driving behavior groups using EEG data. Using independent component analysis, a fast Fourier transformation, and linear discriminant analysis sequentially, the raw EEG signals were processed to extract two core EEG features. Classifier performance was enhanced using the adaptive synthetic sampling approach. A leave-one-subject-out cross validation was conducted. The results showed that the average classification accuracy for all tested traffic states was 69.5% and the highest accuracy reached 83.5%, suggesting a significant correlation between EEG patterns and car-following behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲的山菡完成签到,获得积分10
10秒前
12秒前
28秒前
科研通AI2S应助spark810采纳,获得10
35秒前
35秒前
深情安青应助科研通管家采纳,获得10
51秒前
华仔应助科研通管家采纳,获得10
51秒前
打打应助科研通管家采纳,获得10
51秒前
52秒前
56秒前
如沐春风发布了新的文献求助10
1分钟前
Delight完成签到 ,获得积分10
1分钟前
1分钟前
Ray发布了新的文献求助20
1分钟前
飞鱼z完成签到,获得积分10
1分钟前
1分钟前
调皮千兰发布了新的文献求助10
1分钟前
1分钟前
Ray完成签到,获得积分10
1分钟前
1分钟前
今后应助如沐春风采纳,获得10
1分钟前
科研通AI2S应助英勇羿采纳,获得10
1分钟前
无限的曼易完成签到,获得积分20
1分钟前
2分钟前
wanli完成签到,获得积分10
2分钟前
潇洒小松鼠完成签到,获得积分10
2分钟前
2分钟前
橖子小姐完成签到,获得积分10
2分钟前
2分钟前
bjyx发布了新的文献求助10
2分钟前
共享精神应助如沐春风采纳,获得10
2分钟前
2分钟前
汉堡包应助choyng采纳,获得10
2分钟前
归海梦岚完成签到,获得积分10
2分钟前
朱珠贝完成签到,获得积分10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
bjyx完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798015
关于积分的说明 7826470
捐赠科研通 2454516
什么是DOI,文献DOI怎么找? 1306328
科研通“疑难数据库(出版商)”最低求助积分说明 627704
版权声明 601522