清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Driving behavior recognition using EEG data from a simulated car-following experiment

脑电图 线性判别分析 支持向量机 模式识别(心理学) 人工智能 计算机科学 分类器(UML) 特征提取 驾驶模拟器 工程类 心理学 精神科
作者
Liu Yang,Rui Ma,Michael Zhang,Wei Guan,Shixiong Jiang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:116: 30-40 被引量:147
标识
DOI:10.1016/j.aap.2017.11.010
摘要

Driving behavior recognition is the foundation of driver assistance systems, with potential applications in automated driving systems. Most prevailing studies have used subjective questionnaire data and objective driving data to classify driving behaviors, while few studies have used physiological signals such as electroencephalography (EEG) to gather data. To bridge this gap, this paper proposes a two-layer learning method for driving behavior recognition using EEG data. A simulated car-following driving experiment was designed and conducted to simultaneously collect data on the driving behaviors and EEG data of drivers. The proposed learning method consists of two layers. In Layer I, two-dimensional driving behavior features representing driving style and stability were selected and extracted from raw driving behavior data using K-means and support vector machine recursive feature elimination. Five groups of driving behaviors were classified based on these two-dimensional driving behavior features. In Layer II, the classification results from Layer I were utilized as inputs to generate a k-Nearest-Neighbor classifier identifying driving behavior groups using EEG data. Using independent component analysis, a fast Fourier transformation, and linear discriminant analysis sequentially, the raw EEG signals were processed to extract two core EEG features. Classifier performance was enhanced using the adaptive synthetic sampling approach. A leave-one-subject-out cross validation was conducted. The results showed that the average classification accuracy for all tested traffic states was 69.5% and the highest accuracy reached 83.5%, suggesting a significant correlation between EEG patterns and car-following behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
8秒前
姚芭蕉完成签到 ,获得积分0
12秒前
32429606完成签到 ,获得积分10
26秒前
xinjiasuki完成签到 ,获得积分10
33秒前
韧迹完成签到 ,获得积分0
34秒前
平常日记本完成签到 ,获得积分10
35秒前
40秒前
闪闪的谷梦完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
47秒前
airtermis完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ASL完成签到 ,获得积分10
1分钟前
常有李完成签到,获得积分10
1分钟前
有川洋一完成签到 ,获得积分10
1分钟前
1分钟前
gmc完成签到 ,获得积分10
1分钟前
herpes完成签到 ,获得积分0
1分钟前
汉堡包应助伯赏尔云采纳,获得10
1分钟前
哈基米德应助贝妮戴塔采纳,获得20
1分钟前
拼搏的羊青完成签到 ,获得积分10
1分钟前
天将明完成签到 ,获得积分10
1分钟前
丘比特应助薛言采纳,获得10
1分钟前
Ava应助薛言采纳,获得10
2分钟前
刻苦的新烟完成签到 ,获得积分10
2分钟前
2分钟前
清风完成签到 ,获得积分10
2分钟前
注水萝卜完成签到 ,获得积分10
2分钟前
王波完成签到 ,获得积分10
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
个性松完成签到 ,获得积分10
2分钟前
2分钟前
威武灵阳完成签到,获得积分10
3分钟前
natsu401完成签到 ,获得积分10
3分钟前
3分钟前
贝妮戴塔完成签到,获得积分10
3分钟前
彗星入梦完成签到 ,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015520
求助须知:如何正确求助?哪些是违规求助? 3555453
关于积分的说明 11318050
捐赠科研通 3288665
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012