抑制因子
生长素
基因敲除
细胞生物学
小干扰RNA
生物
核糖核酸
分子生物学
基因表达
遗传学
基因
作者
He Fu,Changzheng Xu,Xiaokang Fu,Yun Shen,Li Guo,Mi Leng,Keming Luo
出处
期刊:Plant Physiology
[Oxford University Press]
日期:2018-05-01
卷期号:177 (2): 775-791
被引量:92
摘要
Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 (miR390), trans-actin small interfering RNAs (tasiRNAs), and AUXIN RESPONSE FACTORs (ARFs) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar (Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1, ARF3.2, and ARF4 expression was inhibited significantly by the presence of salt, and transcript abundance was decreased dramatically in the miR390-overexpressing line but increased in the miR390-knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interfering ARF-binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt, but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt-resistant form of this repressor suppressed LR growth in miR390-overexpressing and ARF4-RNA interfering lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI