Quantitative analysis of polycyclic aromatic hydrocarbons in soil by infrared spectroscopy combined with hybrid variable selection strategy and partial least squares

荧蒽 特征选择 偏最小二乘回归 均方误差 校准 变量消去 生物系统 相关系数 粒子群优化 决定系数 化学 数学 计算机科学 分析化学(期刊) 统计 人工智能 算法 色谱法 有机化学 推论 生物
作者
Maogang Li,Yaozhou Feng,Yan Yu,Tianlong Zhang,Chunhua Yan,Hongsheng Tang,Qinglin Sheng,Hua Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:257: 119771-119771 被引量:28
标识
DOI:10.1016/j.saa.2021.119771
摘要

Infrared spectroscopy (IR) combined with multivariate calibration technology can be used as a potential method to quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) in soil, which provides a rapid data support for soil risk assessment. However, IR spectrum contains lots of useless information, its predictive performance is poor. Variable selection is an effective strategy to eliminate irrelevant wavelengths and enhance predictive performance. In this study, IR combined with partial least squares (PLS) was proposed to quantify anthracene and fluoranthene in soil. In order to improve the predictive performance of the PLS calibration model, the synergy interval PLS (siPLS) method was first used for “rough selection” to select feature bands; on this basis, “fine selection” was performed to extract the feature variables. In “fine selection”, three different feature variables selection methods, such as successive projection algorithm (SPA), genetic algorithm (GA), and particle swarm optimization (PSO), were compared for their performance in extracting effective variables. The results show that the siPLS-GA calibration model receive a lowest root mean square error (RMSE) and a largest determination coefficient (R2). Results of external validation demonstrate an excellent predictive performance of siPLS-GA calibration model, with the R2 = 0.9830, RMSE = 0.5897 mg/g and R2 = 0.9849, RMSE = 0.4739 mg/g for anthracene and fluoranthene, respectively. In summary, siPLS combined with GA can accurately extract the effective information of the target substance and improve the predictive performance of the PLS calibration model based on IR spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健忘远山完成签到 ,获得积分10
1秒前
hanleiharry1发布了新的文献求助10
2秒前
Channing_Ho完成签到 ,获得积分10
2秒前
eric888应助辛勤的诗蕊采纳,获得50
3秒前
3秒前
顺利毕业完成签到,获得积分10
3秒前
4秒前
科研小白完成签到,获得积分10
4秒前
Ava应助甜蜜花采纳,获得10
4秒前
上官若男应助Raza采纳,获得10
4秒前
5秒前
Ava应助眼睛大行云采纳,获得10
5秒前
6秒前
xue完成签到 ,获得积分10
6秒前
健忘丹珍完成签到,获得积分10
6秒前
6秒前
6秒前
坤坤蹦蹦跳跳完成签到,获得积分10
8秒前
害羞映容完成签到,获得积分10
8秒前
科研通AI6应助小亮哈哈采纳,获得10
8秒前
8秒前
8秒前
所所应助liriyii采纳,获得10
8秒前
核糖体完成签到,获得积分20
9秒前
10秒前
Lloignyth完成签到,获得积分10
10秒前
赵苏程完成签到,获得积分10
10秒前
10秒前
10秒前
乐乐应助小张醒了采纳,获得10
11秒前
半凡完成签到,获得积分10
11秒前
小小666完成签到 ,获得积分10
11秒前
幽悠梦儿发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
Elin完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
平平无奇发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978