Quantitative analysis of polycyclic aromatic hydrocarbons in soil by infrared spectroscopy combined with hybrid variable selection strategy and partial least squares

荧蒽 特征选择 偏最小二乘回归 均方误差 校准 变量消去 生物系统 相关系数 粒子群优化 决定系数 化学 数学 计算机科学 分析化学(期刊) 统计 人工智能 算法 色谱法 有机化学 推论 生物
作者
Maogang Li,Yaozhou Feng,Yan Yu,Tianlong Zhang,Chunhua Yan,Hongsheng Tang,Qinglin Sheng,Hua Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:257: 119771-119771 被引量:28
标识
DOI:10.1016/j.saa.2021.119771
摘要

Infrared spectroscopy (IR) combined with multivariate calibration technology can be used as a potential method to quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) in soil, which provides a rapid data support for soil risk assessment. However, IR spectrum contains lots of useless information, its predictive performance is poor. Variable selection is an effective strategy to eliminate irrelevant wavelengths and enhance predictive performance. In this study, IR combined with partial least squares (PLS) was proposed to quantify anthracene and fluoranthene in soil. In order to improve the predictive performance of the PLS calibration model, the synergy interval PLS (siPLS) method was first used for “rough selection” to select feature bands; on this basis, “fine selection” was performed to extract the feature variables. In “fine selection”, three different feature variables selection methods, such as successive projection algorithm (SPA), genetic algorithm (GA), and particle swarm optimization (PSO), were compared for their performance in extracting effective variables. The results show that the siPLS-GA calibration model receive a lowest root mean square error (RMSE) and a largest determination coefficient (R2). Results of external validation demonstrate an excellent predictive performance of siPLS-GA calibration model, with the R2 = 0.9830, RMSE = 0.5897 mg/g and R2 = 0.9849, RMSE = 0.4739 mg/g for anthracene and fluoranthene, respectively. In summary, siPLS combined with GA can accurately extract the effective information of the target substance and improve the predictive performance of the PLS calibration model based on IR spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Neko完成签到,获得积分10
2秒前
chenkj完成签到,获得积分10
3秒前
ikun完成签到,获得积分10
4秒前
EricSai完成签到,获得积分10
4秒前
风信子完成签到,获得积分10
4秒前
研友_nvebxL完成签到,获得积分10
5秒前
339564965完成签到,获得积分10
6秒前
John完成签到,获得积分10
6秒前
ccc完成签到,获得积分0
7秒前
Helios完成签到,获得积分10
8秒前
只想顺利毕业的科研狗完成签到,获得积分0
8秒前
幽默的语蕊完成签到,获得积分10
9秒前
xueshidaheng完成签到,获得积分0
9秒前
nanostu完成签到,获得积分0
10秒前
ZHQ完成签到,获得积分10
10秒前
Brief完成签到,获得积分0
11秒前
12秒前
12秒前
12秒前
12秒前
鹏举瞰冷雨完成签到,获得积分10
12秒前
fate8680完成签到,获得积分10
12秒前
Noshore完成签到,获得积分10
12秒前
专注的水壶完成签到 ,获得积分10
17秒前
胡33完成签到,获得积分10
17秒前
BAEK完成签到,获得积分10
21秒前
25秒前
自信南霜完成签到,获得积分10
28秒前
ycliang发布了新的文献求助10
29秒前
长孙烙完成签到 ,获得积分10
30秒前
vitamin完成签到 ,获得积分10
33秒前
柳叶刀Z完成签到 ,获得积分10
36秒前
小希完成签到 ,获得积分10
36秒前
无一完成签到 ,获得积分0
44秒前
小宋同学不能怂完成签到 ,获得积分10
47秒前
xcuwlj完成签到 ,获得积分10
51秒前
QCB完成签到 ,获得积分0
55秒前
YJ完成签到 ,获得积分10
55秒前
LF-Scie完成签到,获得积分10
58秒前
今后应助wei采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689432
捐赠科研通 4591885
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463118