Cloud-edge collaboration based transferring prediction of building energy consumption

重新使用 上传 计算机科学 粒度 GSM演进的增强数据速率 云计算 数据挖掘 能源消耗 相似性(几何) 匹配(统计) 边缘设备 人工智能 工程类 图像(数学) 电气工程 数学 操作系统 统计 废物管理
作者
Jinping Zhang,Xiaoping Deng,Chengdong Li,Guanqun Su,Yulong Yu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (6): 7563-7575
标识
DOI:10.3233/jifs-211607
摘要

Building energy consumption (BEC) prediction often requires constructing a corresponding model for each building based historical data. However, the constructed model for one building is difficult to be reused in other buildings. Recent approaches have shown that cloud-edge collaboration architecture is promising in realizing model reuse. How to complete the reuse of cloud energy consumption prediction models at the edge and reduce the computational cost of the model training is one of the key issues that need to be solved. To handle the above problems, a cloud-edge collaboration based transferring prediction method for BEC is proposed in this paper. Specifically, a model library stored prediction models for different types of buildings is constructed based the historical energy consumption data and the long short-term memory (LSTM) network in the cloud firstly; then, the similarity measurement strategies of time series with different granularity are given, and the model to be transferred from the model library is matched by analyzing the similarity between observation data uploaded to the cloud and the historical data collected in the cloud; finally, the fine-tuning strategy of the matching prediction model is given, and this model is fine-tuned at the edge to achieve its reuse in concrete application scenarios. Experiments on practical datasets reveal that compared with the prediction model which doesn’t utilize the transfer strategy, the proposed prediction model has better performance according to MAE and RMSE. Experimental results also confirm that the proposed method effectively reduces the computational cost of the network training at the edge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默默老黑发布了新的文献求助10
3秒前
古月完成签到,获得积分20
3秒前
lgx关闭了lgx文献求助
3秒前
4秒前
oldniu完成签到,获得积分10
4秒前
直率的拉米完成签到,获得积分10
5秒前
饱满贞发布了新的文献求助10
9秒前
11秒前
12秒前
15秒前
jnrr发布了新的文献求助10
15秒前
zhuann完成签到,获得积分10
17秒前
ceeray23发布了新的文献求助111
17秒前
BlankWhite完成签到,获得积分10
18秒前
20秒前
李爱国应助adeno采纳,获得10
20秒前
iidae完成签到,获得积分10
21秒前
22秒前
火火发布了新的文献求助10
23秒前
打打应助只羊采纳,获得10
24秒前
x-17发布了新的文献求助20
25秒前
Estrella应助jnrr采纳,获得10
25秒前
26秒前
26秒前
十七完成签到 ,获得积分10
27秒前
我爱大鸡腿啦啦关注了科研通微信公众号
29秒前
风中傲柔发布了新的文献求助10
29秒前
布鲁爱思发布了新的文献求助10
31秒前
情怀应助苹果白凡采纳,获得10
31秒前
33秒前
千千应助南街初晴采纳,获得10
33秒前
yar应助沙脑采纳,获得10
34秒前
风中傲柔完成签到,获得积分10
36秒前
英姑应助LiCQ采纳,获得10
36秒前
科目三应助ML采纳,获得10
38秒前
慕青应助布鲁爱思采纳,获得10
38秒前
王提发布了新的文献求助10
39秒前
明亮半雪关注了科研通微信公众号
40秒前
斯文败类应助火火采纳,获得10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466497
求助须知:如何正确求助?哪些是违规求助? 3059297
关于积分的说明 9065872
捐赠科研通 2749797
什么是DOI,文献DOI怎么找? 1508699
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696838