Numerical modeling of residual stresses during vibratory peening of a 3-stage Blisk – a multi-scale discrete element and finite element approach

喷丸 残余应力 有限元法 材料科学 喷丸 结构工程 抛光 激光喷丸 冶金 机械工程 工程类
作者
Joselito Yam II Alcaraz,Jing Zhang,Arun Prasanth Nagalingam,Sharan Kumar Gopasetty,Boon Loong Toh,Abhay Gopinath,Kunal Ahluwalia,Marcus Guo Wei Ang,Song Huat Yeo
出处
期刊:Journal of Materials Processing Technology [Elsevier]
卷期号:299: 117383-117383 被引量:29
标识
DOI:10.1016/j.jmatprotec.2021.117383
摘要

Vibratory-based manufacturing processes such as polishing, and peening are widely used for surface enhancement applications. Vibratory peening is an excellent process to introduce residual stresses, improve fatigue life, and enhance the surface quality of metallic components. This research aims to understand the combined peening-polishing mechanism in the vibratory peening process of a gas turbine engine's 3-stage blisk using a novel horizontal vibratory peening method. The research was aimed to understand the common understanding that the deeper the component in the vibratory machine, the higher would be the media-component interaction effect and better would be the peening effect. However, contrary to the hypothesis, the experimental findings showed significant peening (60.0 % higher than bottom) in the coupons near the top surface of the media in the trough. The DEM results revealed that the media-component normal relative velocity (Vn) and normal contact energy (Enc) contributed to the peening effect and the contact force (Fc), tangential contact energy (Etc) contributed to the polishing effect. The DEM results were used as input conditions for FEM to predict the residual stresses from peening. The FEM simulated residual stress trend matches the experimental findings, with differences not exceeding ∼ 40 % for most cases. The combined DEM-FEM approach provides an opportunity to understand the complex behavior of media-component interaction in a vibratory process. With this understanding, vibratory peening all three stages of a blisk simultaneously reduces the overall production cost and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soso完成签到 ,获得积分10
1秒前
1秒前
狗狗应助跳跃乘风采纳,获得20
2秒前
小油条应助Amai采纳,获得20
2秒前
科研通AI5应助clear采纳,获得10
2秒前
韩金龙完成签到,获得积分10
3秒前
科研通AI2S应助LiShin采纳,获得10
3秒前
希望天下0贩的0应助尘雾采纳,获得10
5秒前
5秒前
12345完成签到,获得积分10
6秒前
Lialilico完成签到,获得积分10
7秒前
Akim应助我必做出来采纳,获得50
7秒前
8秒前
随机起的名完成签到,获得积分10
8秒前
Owen应助努力的小狗屁采纳,获得10
9秒前
9秒前
vuig完成签到 ,获得积分10
9秒前
哈哈哈的一笑完成签到,获得积分10
9秒前
9秒前
Emma完成签到,获得积分10
9秒前
10秒前
10秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
10秒前
huanger完成签到,获得积分10
10秒前
Tayzon完成签到 ,获得积分10
10秒前
我测你码完成签到,获得积分10
10秒前
超级宇宙二踢脚完成签到,获得积分10
11秒前
11秒前
12秒前
大气小新完成签到,获得积分10
12秒前
ILS完成签到 ,获得积分10
12秒前
Orange应助澜生采纳,获得10
13秒前
lin完成签到,获得积分10
14秒前
Ares发布了新的文献求助10
14秒前
14秒前
谭平完成签到 ,获得积分10
14秒前
15秒前
淡定紫菱完成签到,获得积分10
15秒前
所所应助HYH采纳,获得20
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794