A fast calibration algorithm for Non-Dispersive Infrared single channel carbon dioxide sensor based on deep learning

校准 计算机科学 人工神经网络 二氧化碳 频道(广播) 匹配(统计) 算法 集合(抽象数据类型) 人工智能 遥感 电信 统计 化学 数学 地质学 有机化学 程序设计语言
作者
Keji Mao,Jing Xu,Runhui Jin,Yuxiang Wang,Kai Fang
出处
期刊:Computer Communications [Elsevier BV]
卷期号:179: 175-182 被引量:13
标识
DOI:10.1016/j.comcom.2021.08.003
摘要

As people pay more attention to environmental monitoring, Carbon dioxide (CO2) sensors are widely used. However, most of the infrared CO2 single-channel sensors are accompanied by low calibration efficiency and low accuracy. In order to save costs while improving calibration efficiency and accuracy, we proposed a fast calibration algorithm for Non-Dispersive Infrared (NDIR) single-channel carbon dioxide sensor based on deep learning. Firstly, we establish N network models which consist of N sensors by collecting m data points from different temperatures and concentrations. Secondly, we collect six data points from a new sensor which are measured at three temperatures and two concentrations. Thirdly, we choose multiple approximate models from N network models based on the matching of the data points. At last, we regard these models as the estimation model of the new sensor to calibrate the sensor concentration. This method eliminates the individual differences of a single model to a certain extent and achieves the purpose of rapid calibration. After comparing three kinds of neural networks and conducting relevant experiments, we chose BP neural network as the model, and set the number of selected models to three. The results show that the floating up and down by industry-standard 5% plus or minus 50 ppm calculation, the qualified rate of our method is up to 91.542% between 0 °C to 45 °C, and the qualified rate even reaches 99.063% between 20 °C to 35 °C. Compared with similar products, the qualified rate of our method in the calibration of carbon dioxide increases by 12.315% and 22.732% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怡然的代玉完成签到,获得积分10
1秒前
ziyue发布了新的文献求助10
1秒前
Light发布了新的文献求助10
2秒前
可乐龙猫完成签到,获得积分10
2秒前
Hello应助宫野珏采纳,获得10
2秒前
CQ发布了新的文献求助10
3秒前
水木应助hsialy采纳,获得10
3秒前
西早12发布了新的文献求助10
4秒前
5秒前
张涛发布了新的文献求助30
6秒前
6秒前
吐丝麵包完成签到,获得积分10
7秒前
7秒前
李小聪完成签到 ,获得积分10
8秒前
眼睛大莆完成签到,获得积分10
9秒前
温婉的乌完成签到,获得积分10
9秒前
10秒前
所所应助lufei采纳,获得10
10秒前
马明旋发布了新的文献求助10
11秒前
yar应助望乐思采纳,获得10
11秒前
liquor发布了新的文献求助10
11秒前
眼睛大莆发布了新的文献求助10
12秒前
研友_VZG7GZ应助言无间采纳,获得10
12秒前
12秒前
13秒前
洁净斑马发布了新的文献求助10
13秒前
万能图书馆应助11采纳,获得30
13秒前
尊敬雨双完成签到,获得积分20
13秒前
顾矜应助光亮元枫采纳,获得10
15秒前
15秒前
15秒前
尊敬雨双发布了新的文献求助10
16秒前
17秒前
正无穷完成签到,获得积分10
17秒前
浪吃完成签到,获得积分20
17秒前
一轮太阳和幻想完成签到,获得积分10
17秒前
17秒前
曾经的真发布了新的文献求助10
19秒前
封典完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970949
求助须知:如何正确求助?哪些是违规求助? 3515634
关于积分的说明 11179061
捐赠科研通 3250769
什么是DOI,文献DOI怎么找? 1795474
邀请新用户注册赠送积分活动 875831
科研通“疑难数据库(出版商)”最低求助积分说明 805188