A data-driven approach based on quantile regression forest to forecast cooling load for commercial buildings

分位数回归 梯度升压 分位数 计算机科学 特征选择 冷负荷 利用 能源消耗 数据挖掘 随机森林 预测建模 概率预测 回归 机器学习 人工智能 工程类 计量经济学 统计 数学 电气工程 空调 机械工程 概率逻辑 计算机安全
作者
Mashud Rana,Subbu Sethuvenkatraman,Mark Goldsworthy
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:76: 103511-103511 被引量:5
标识
DOI:10.1016/j.scs.2021.103511
摘要

• Data-driven approach based on quantile regression forest for forecasting cooling load. • Input variables selection by applying mutual information and recursive feature elimination. • Uncertainty quantification by computing Prediction Intervals (PIs). Reliable prediction of thermal load is essential for implementing an efficient and economic energy management plan in commercial buildings. While previous research has been concerned with point forecasts , in this study we focus on forecasting prediction intervals for building thermal load. Prediction Intervals (PIs) are more useful than point forecasts as they can quantify the uncertainty associated with energy consumption in the buildings and enable the market participants to exploit current energy market benefits more effectively. We present a data-driven approach for forecasting PIs for building cooling load which first uses machine learning feature selection methods to identify a small but informative set of variables. It then applies quantile regression forest as the prediction algorithm that uses the selected features as inputs to compute the upper and lower boundaries of PIs. We evaluate the performance of the proposed approach using real data sets from two commercial buildings: a large shopping centre and an office building. The results show that the proposed approach can generate narrow and reliable PIs while satisfying the pre-specified coverage probabilities. The approach is fast to train and significantly outperforms traditional Gradient Boosting Regression (GBR) model in terms of reliability of the generated PIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大萝贝完成签到,获得积分10
1秒前
1秒前
110完成签到,获得积分10
1秒前
香蕉觅云应助Spring采纳,获得10
1秒前
2秒前
智文完成签到 ,获得积分10
3秒前
3秒前
3秒前
5秒前
mmr发布了新的文献求助10
6秒前
清禾kat完成签到,获得积分10
6秒前
6秒前
在水一方应助zzy采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
star009完成签到,获得积分10
9秒前
闹心发布了新的文献求助10
10秒前
10秒前
Rondab应助zyz采纳,获得20
11秒前
Harish完成签到,获得积分10
12秒前
12秒前
十四完成签到,获得积分10
13秒前
南风发布了新的文献求助10
13秒前
14秒前
月下完成签到,获得积分10
14秒前
Jasper应助dio采纳,获得10
14秒前
Seven发布了新的文献求助10
15秒前
小白发布了新的文献求助10
17秒前
金枪鱼完成签到,获得积分10
17秒前
18秒前
18秒前
21秒前
金枪鱼发布了新的文献求助20
21秒前
21秒前
21秒前
wld完成签到,获得积分10
22秒前
22秒前
22秒前
优雅咖啡豆完成签到,获得积分10
23秒前
浮游应助谢言一采纳,获得30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908239
求助须知:如何正确求助?哪些是违规求助? 4184921
关于积分的说明 12996146
捐赠科研通 3951616
什么是DOI,文献DOI怎么找? 2167074
邀请新用户注册赠送积分活动 1185545
关于科研通互助平台的介绍 1092127