A data-driven approach based on quantile regression forest to forecast cooling load for commercial buildings

分位数回归 梯度升压 分位数 计算机科学 特征选择 冷负荷 利用 能源消耗 数据挖掘 随机森林 预测建模 概率预测 回归 机器学习 人工智能 工程类 计量经济学 统计 数学 电气工程 空调 机械工程 概率逻辑 计算机安全
作者
Mashud Rana,Subbu Sethuvenkatraman,Mark Goldsworthy
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:76: 103511-103511 被引量:5
标识
DOI:10.1016/j.scs.2021.103511
摘要

• Data-driven approach based on quantile regression forest for forecasting cooling load. • Input variables selection by applying mutual information and recursive feature elimination. • Uncertainty quantification by computing Prediction Intervals (PIs). Reliable prediction of thermal load is essential for implementing an efficient and economic energy management plan in commercial buildings. While previous research has been concerned with point forecasts , in this study we focus on forecasting prediction intervals for building thermal load. Prediction Intervals (PIs) are more useful than point forecasts as they can quantify the uncertainty associated with energy consumption in the buildings and enable the market participants to exploit current energy market benefits more effectively. We present a data-driven approach for forecasting PIs for building cooling load which first uses machine learning feature selection methods to identify a small but informative set of variables. It then applies quantile regression forest as the prediction algorithm that uses the selected features as inputs to compute the upper and lower boundaries of PIs. We evaluate the performance of the proposed approach using real data sets from two commercial buildings: a large shopping centre and an office building. The results show that the proposed approach can generate narrow and reliable PIs while satisfying the pre-specified coverage probabilities. The approach is fast to train and significantly outperforms traditional Gradient Boosting Regression (GBR) model in terms of reliability of the generated PIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
善学以致用应助黄黄采纳,获得10
3秒前
3秒前
024680完成签到,获得积分10
3秒前
4秒前
Liufgui应助何1采纳,获得10
5秒前
trocars完成签到,获得积分10
5秒前
老迟到的梦旋完成签到 ,获得积分10
6秒前
024680发布了新的文献求助10
6秒前
小向1993完成签到 ,获得积分10
7秒前
共享精神应助kesong采纳,获得10
8秒前
9秒前
9秒前
热心市民小红花应助dreamer采纳,获得10
10秒前
11秒前
tion66完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
mj发布了新的文献求助10
14秒前
昏睡的铅笔完成签到,获得积分10
16秒前
16秒前
一只小锦鲤完成签到 ,获得积分10
16秒前
科研小螃蟹完成签到,获得积分0
17秒前
18秒前
18秒前
mj完成签到,获得积分10
19秒前
黄黄发布了新的文献求助10
21秒前
ttt发布了新的文献求助10
22秒前
25秒前
27秒前
甲醇杀手发布了新的文献求助10
28秒前
大个应助zwy109采纳,获得10
30秒前
斯文败类应助hyue采纳,获得10
31秒前
晨曦完成签到,获得积分10
32秒前
Jasper应助budingman采纳,获得20
32秒前
我是老大应助cyh采纳,获得10
34秒前
SciGPT应助黄黄采纳,获得10
36秒前
38秒前
善学以致用应助Cloud采纳,获得10
39秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068