材料科学
催化作用
硫黄
电解质
异质结
多硫化物
石墨烯
硒化物
化学工程
无机化学
纳米技术
化学
电极
光电子学
物理化学
硒
生物化学
工程类
冶金
作者
Zhengqing Ye,Ying Jiang,Tianyu Yang,Li Li,Feng Wu,Renjie Chen
标识
DOI:10.1002/advs.202103456
摘要
Abstract Sluggish sulfur reduction and lithium sulfide (Li 2 S) oxidation prevent the widespread use of lithium–sulfur (Li–S) batteries, which are attractive alternatives to Li−ion batteries. The authors propose that a transition metal selenide heterojunction (CoSe–ZnSe) catalytically accelerates bidirectional sulfur conversion reactions. A combination of synchrotron X‐ray absorption spectroscopy and density functional theory calculations show that a highly active heterointerface with charge redistribution and structure distortion effectively immobilizes sulfur species, facilitates Li ion diffusion, and decreases the sulfur reduction and Li 2 S oxidation energy barriers. The CoSe–ZnSe catalytic cathode exhibits high areal capacities, good rate capability, and superior cycling stability with capacity fading rate of 0.027% per cycle over 1700 cycles. Furthermore, CoSe–ZnSe heterojunctions anchored on graphene aerogels (CoSe–ZnSe@G) enhance ionic transport and catalytic activity under high sulfur loading and lean electrolyte conditions. A high areal capacity of 8.0 mAh cm −2 is achieved at an electrolyte/sulfur ratio of 3 µL mg −1 . This study demonstrates the importance of bidirectional catalytic heterojunctions and structure engineering in boosting Li–S battery performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI