Let it Snow: On the Synthesis of Adverse Weather Image Data

恶劣天气 能见度 计算机科学 雨雪交融 人工智能 目标检测 天气预报 计算机视觉 除雪 过程(计算) 图像(数学) 气象学 模式识别(心理学) 地理 操作系统
作者
Thomas Rothmeier,Werner Huber
标识
DOI:10.1109/itsc48978.2021.9565008
摘要

Camera systems of automated vehicles capture images from the surrounding environment and process these datastreams with algorithms to detect and classify objects. A lot of research has been devoted to improve object detection algorithms in order to provide highly accurate detection results in real time. However, these algorithms show a strong drop in performance as soon as they are exposed to adverse weather. Poor weather conditions such as rain, fog or snow lead to a reduction in visibility and thus objects are more difficult to recognize or not visible at all. This leads to a high degree of uncertainty for an automotive camera system. To enable automated driving, camera systems must be able to cope with adverse weather and the associated high uncertainty. Including more weather image data when training the algorithms can improve object detection in bad visibility conditions. However, weather image data is difficult to collect in reality and thus only available to a limited extent. In this work, we evaluate the possibility of using Generative Adversarial Networks to create synthetic weather image data. For this purpose, we compare the generated images of different network architectures trained on a diverse weather dataset collected from Flickr. The resulting data is evaluated qualitatively and quantitatively with respect to its realism and suggests that our approach is capable of generating realistic weather images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭凯发布了新的文献求助10
1秒前
超级的绿凝完成签到,获得积分10
2秒前
李健应助小叶子采纳,获得10
3秒前
无语的宛白关注了科研通微信公众号
3秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
星辰大海应助1101592875采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得30
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
EMC应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
小蘑菇应助失眠紫真采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
萤火微光完成签到,获得积分10
7秒前
刘卓应助科研通管家采纳,获得10
7秒前
酷波er应助zorro3574采纳,获得10
7秒前
背后半凡完成签到,获得积分10
7秒前
8秒前
Twonej应助科研通管家采纳,获得30
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Twonej应助科研通管家采纳,获得30
8秒前
mouxq发布了新的文献求助10
8秒前
8秒前
EMC应助科研通管家采纳,获得10
9秒前
雨下整夜完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131