Let it Snow: On the Synthesis of Adverse Weather Image Data

恶劣天气 能见度 计算机科学 雨雪交融 人工智能 目标检测 天气预报 计算机视觉 除雪 过程(计算) 图像(数学) 气象学 模式识别(心理学) 地理 操作系统
作者
Thomas Rothmeier,Werner Huber
标识
DOI:10.1109/itsc48978.2021.9565008
摘要

Camera systems of automated vehicles capture images from the surrounding environment and process these datastreams with algorithms to detect and classify objects. A lot of research has been devoted to improve object detection algorithms in order to provide highly accurate detection results in real time. However, these algorithms show a strong drop in performance as soon as they are exposed to adverse weather. Poor weather conditions such as rain, fog or snow lead to a reduction in visibility and thus objects are more difficult to recognize or not visible at all. This leads to a high degree of uncertainty for an automotive camera system. To enable automated driving, camera systems must be able to cope with adverse weather and the associated high uncertainty. Including more weather image data when training the algorithms can improve object detection in bad visibility conditions. However, weather image data is difficult to collect in reality and thus only available to a limited extent. In this work, we evaluate the possibility of using Generative Adversarial Networks to create synthetic weather image data. For this purpose, we compare the generated images of different network architectures trained on a diverse weather dataset collected from Flickr. The resulting data is evaluated qualitatively and quantitatively with respect to its realism and suggests that our approach is capable of generating realistic weather images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YIYI完成签到,获得积分20
1秒前
wanci应助immm采纳,获得10
1秒前
JIAN关注了科研通微信公众号
2秒前
共享精神应助mole采纳,获得30
2秒前
2秒前
3秒前
3秒前
爆米花应助ClaudiaCY采纳,获得10
4秒前
5秒前
一壶古酒应助胖虎采纳,获得50
5秒前
大胆的一刀完成签到,获得积分10
6秒前
cjlumm发布了新的文献求助10
7秒前
贤惠的翰发布了新的文献求助10
8秒前
8秒前
8秒前
MC番薯发布了新的文献求助10
9秒前
www发布了新的文献求助10
9秒前
科研通AI2S应助旺旺采纳,获得10
10秒前
坚强的纸鹤完成签到,获得积分20
11秒前
Lucas应助土豪的醉香采纳,获得10
11秒前
PhDLi完成签到,获得积分10
11秒前
香蕉诗蕊举报jinggaier求助涉嫌违规
12秒前
斯文败类应助承一采纳,获得10
12秒前
12秒前
14秒前
yuanshl1985发布了新的文献求助30
15秒前
15秒前
BenBen发布了新的文献求助10
16秒前
坦率灵槐应助Nanami_ii采纳,获得10
16秒前
坦率灵槐应助沉静的灵松采纳,获得10
17秒前
Akim应助yuanyuan采纳,获得10
17秒前
未央应助搞怪的鹤采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
潇洒的如松完成签到,获得积分10
20秒前
火星上的曼彤完成签到,获得积分10
22秒前
橘子味完成签到,获得积分10
22秒前
旺旺完成签到,获得积分20
22秒前
霸气雯完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501