已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Let it Snow: On the Synthesis of Adverse Weather Image Data

恶劣天气 能见度 计算机科学 雨雪交融 人工智能 目标检测 天气预报 计算机视觉 除雪 过程(计算) 图像(数学) 气象学 模式识别(心理学) 地理 操作系统
作者
Thomas Rothmeier,Werner Huber
标识
DOI:10.1109/itsc48978.2021.9565008
摘要

Camera systems of automated vehicles capture images from the surrounding environment and process these datastreams with algorithms to detect and classify objects. A lot of research has been devoted to improve object detection algorithms in order to provide highly accurate detection results in real time. However, these algorithms show a strong drop in performance as soon as they are exposed to adverse weather. Poor weather conditions such as rain, fog or snow lead to a reduction in visibility and thus objects are more difficult to recognize or not visible at all. This leads to a high degree of uncertainty for an automotive camera system. To enable automated driving, camera systems must be able to cope with adverse weather and the associated high uncertainty. Including more weather image data when training the algorithms can improve object detection in bad visibility conditions. However, weather image data is difficult to collect in reality and thus only available to a limited extent. In this work, we evaluate the possibility of using Generative Adversarial Networks to create synthetic weather image data. For this purpose, we compare the generated images of different network architectures trained on a diverse weather dataset collected from Flickr. The resulting data is evaluated qualitatively and quantitatively with respect to its realism and suggests that our approach is capable of generating realistic weather images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
焕颜完成签到,获得积分20
2秒前
白日兰完成签到 ,获得积分10
3秒前
6秒前
斯文败类应助博修采纳,获得10
6秒前
焕颜发布了新的文献求助10
7秒前
充电宝应助科研通管家采纳,获得10
9秒前
柯一一应助科研通管家采纳,获得10
9秒前
柯一一应助科研通管家采纳,获得10
9秒前
9秒前
FIN应助科研通管家采纳,获得10
9秒前
FIN应助科研通管家采纳,获得20
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
柯一一应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
moshi发布了新的文献求助10
10秒前
11秒前
命运发布了新的文献求助20
11秒前
zhilu完成签到,获得积分10
13秒前
14秒前
NexusExplorer应助乐观青亦采纳,获得10
14秒前
15秒前
小远发布了新的文献求助10
16秒前
FashionBoy应助阿秋秋秋采纳,获得10
17秒前
虚幻初之发布了新的文献求助10
19秒前
20秒前
ding完成签到,获得积分10
21秒前
Jasper应助胖Q采纳,获得10
22秒前
little forest发布了新的文献求助10
22秒前
汉堡包应助昴昴昴采纳,获得10
24秒前
李爱国应助ChuanjiWu采纳,获得10
24秒前
万能图书馆应助虚幻初之采纳,获得10
25秒前
25秒前
SciGPT应助Manbo采纳,获得10
26秒前
博修发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
30秒前
rynchee完成签到 ,获得积分0
31秒前
怕黑面包完成签到 ,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024