Let it Snow: On the Synthesis of Adverse Weather Image Data

恶劣天气 能见度 计算机科学 雨雪交融 人工智能 目标检测 天气预报 计算机视觉 除雪 过程(计算) 图像(数学) 气象学 模式识别(心理学) 地理 操作系统
作者
Thomas Rothmeier,Werner Huber
标识
DOI:10.1109/itsc48978.2021.9565008
摘要

Camera systems of automated vehicles capture images from the surrounding environment and process these datastreams with algorithms to detect and classify objects. A lot of research has been devoted to improve object detection algorithms in order to provide highly accurate detection results in real time. However, these algorithms show a strong drop in performance as soon as they are exposed to adverse weather. Poor weather conditions such as rain, fog or snow lead to a reduction in visibility and thus objects are more difficult to recognize or not visible at all. This leads to a high degree of uncertainty for an automotive camera system. To enable automated driving, camera systems must be able to cope with adverse weather and the associated high uncertainty. Including more weather image data when training the algorithms can improve object detection in bad visibility conditions. However, weather image data is difficult to collect in reality and thus only available to a limited extent. In this work, we evaluate the possibility of using Generative Adversarial Networks to create synthetic weather image data. For this purpose, we compare the generated images of different network architectures trained on a diverse weather dataset collected from Flickr. The resulting data is evaluated qualitatively and quantitatively with respect to its realism and suggests that our approach is capable of generating realistic weather images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhai发布了新的文献求助30
1秒前
3秒前
Feng发布了新的文献求助10
3秒前
3秒前
3秒前
lv完成签到,获得积分10
4秒前
4秒前
俊逸香岚完成签到,获得积分10
4秒前
fazat完成签到,获得积分20
5秒前
5秒前
与木完成签到,获得积分10
5秒前
爆米花应助SSY采纳,获得10
5秒前
6秒前
Alizmee发布了新的文献求助10
6秒前
7秒前
fazat发布了新的文献求助10
7秒前
大模型应助孙明浩采纳,获得30
7秒前
科研通AI6应助stoic采纳,获得10
7秒前
8秒前
传奇3应助emmmmmq采纳,获得10
8秒前
犹豫书瑶发布了新的文献求助10
8秒前
ZAL完成签到,获得积分10
8秒前
9秒前
10秒前
菜头完成签到,获得积分10
10秒前
我是老大应助An采纳,获得10
11秒前
夜安完成签到 ,获得积分10
11秒前
zzz发布了新的文献求助10
12秒前
12秒前
12秒前
开花发布了新的文献求助10
12秒前
浮游应助snopec采纳,获得10
12秒前
13秒前
子车茗应助无心的鹤采纳,获得20
14秒前
小人物完成签到,获得积分20
14秒前
15秒前
朝阳完成签到,获得积分10
15秒前
15秒前
16秒前
invisiable完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933105
求助须知:如何正确求助?哪些是违规求助? 4201461
关于积分的说明 13052835
捐赠科研通 3975404
什么是DOI,文献DOI怎么找? 2178354
邀请新用户注册赠送积分活动 1194774
关于科研通互助平台的介绍 1106106