QuantBayes: Weight Optimization for Memristive Neural Networks via Quantization-Aware Bayesian Inference

记忆电阻器 计算机科学 人工神经网络 神经形态工程学 量化(信号处理) 稳健性(进化) 推论 人工智能 算法 电子工程 工程类 生物化学 基因 化学
作者
Yue Zhou,Xiaofang Hu,Lidan Wang,Guangdong Zhou,Shukai Duan
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:68 (12): 4851-4861 被引量:17
标识
DOI:10.1109/tcsi.2021.3115787
摘要

The memristor-based neuromorphic computing system (NCS) with emerging storage and computing integration architecture has drawn extensive attention. Because of the unique nonvolatility and programmability, the memristor is an ideal nano-device to realize neural synapses in VLSI circuit implementation of neural networks. However, in the hardware implementation, the performance of the memristive neural network is always affected by quantization error, writing error, and conductance drift, which seriously hinders its applications in practice. In this paper, a novel weight optimization scheme combining quantization and Bayesian inference is proposed to alleviate this problem. Specifically, the weight deviation in the memristive neural network is transformed into the weight uncertainty in the Bayesian neural network, which can make the network insensitive to unexpected weight changes. A quantization regularization term is designed and utilized during the training process of the Bayesian neural network, reducing the quantization error and improving the robustness of the network. Furthermore, a partial training method is raised to extend the applicability of the proposed scheme in large-scale neural networks. Finally, the experiments on a Multilayer Perceptron and LeNet demonstrate that the proposed weight optimization scheme can significantly enhance the robustness of memristive neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbdd2334发布了新的文献求助10
1秒前
1秒前
张雷应助自觉南风采纳,获得10
1秒前
demom完成签到 ,获得积分10
2秒前
zigzag完成签到,获得积分10
2秒前
z_king_d_23发布了新的文献求助10
3秒前
3秒前
急聘行完成签到,获得积分10
4秒前
APPLE完成签到 ,获得积分10
4秒前
坨坨完成签到,获得积分10
5秒前
奋斗梦旋完成签到,获得积分10
5秒前
labxgr发布了新的文献求助10
5秒前
是小小李哇完成签到 ,获得积分10
7秒前
7秒前
静曼发布了新的文献求助10
7秒前
棠梨子完成签到 ,获得积分10
8秒前
jewelliang发布了新的文献求助10
8秒前
dora332211完成签到,获得积分10
8秒前
9秒前
树上的猫头鹰完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
完美世界应助楼下太吵了采纳,获得10
10秒前
麟钰完成签到,获得积分10
11秒前
yydragen应助王鹏飞采纳,获得30
11秒前
Seciy完成签到,获得积分10
12秒前
Jasper应助bbdd2334采纳,获得10
13秒前
wy.he应助itsdatou采纳,获得20
13秒前
喜悦的秋柔完成签到,获得积分10
15秒前
15秒前
Valars发布了新的文献求助10
16秒前
Seciy发布了新的文献求助10
16秒前
完美世界应助机智的访云采纳,获得10
16秒前
朴素的问枫完成签到,获得积分10
17秒前
张晓飞完成签到,获得积分10
17秒前
yasiraziz完成签到,获得积分10
18秒前
云栖完成签到,获得积分10
18秒前
领导范儿应助superhero采纳,获得10
18秒前
Singularity应助自觉南风采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600