Injury severity prediction of traffic crashes with ensemble machine learning techniques: a comparative study

撞车 决策树 毒物控制 逻辑回归 随机森林 集成学习 机器学习 计算机科学 预测建模 梯度升压 基督教牧师 伤害预防 统计 人工智能 数学 医学 医疗急救 哲学 程序设计语言 神学
作者
Arshad Jamal,Muhammad Zahid,Muhammad Tauhidur Rahman,Hassan M. Al-Ahmadi,Meshal Almoshaogeh,Danish Farooq,Mahmood Ahmad
出处
期刊:International Journal of Injury Control and Safety Promotion [Taylor & Francis]
卷期号:28 (4): 408-427 被引量:89
标识
DOI:10.1080/17457300.2021.1928233
摘要

A better understanding of injury severity risk factors is fundamental to improving crash prediction and effective implementation of appropriate mitigation strategies. Traditional statistical models widely used in this regard have predefined correlation and intrinsic assumptions, which, if flouted, may yield biased predictions. The present study investigates the possibility of using the eXtreme Gradient Boosting (XGBoost) model compared with few traditional machine learning algorithms (logistic regression, random forest, and decision tree) for crash injury severity analysis. The data used in this study was obtained from the traffic safety department, ministry of transport (MOT) at Riyadh, KSA, and contains 13,546 motor vehicle collisions along 15 rural highways reported between January 2017 to December 2019. Empirical results obtained using k-fold (k = 10) for various performance metrics showed that the XGBoost technique outperformed other models in terms of the collective predictive performance as well as injury severity individual class accuracies. XGBoost feature importance analysis indicated that collision type, weather status, road surface conditions, on-site damage type, lighting conditions, and vehicle type are the few sensitive variables in predicting the crash injury severity outcome. Finally, a comparative analysis of XGBoost based on different performance statistics showed that our model outperformed most previous studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
242588发布了新的文献求助10
刚刚
科研通AI5应助tian采纳,获得10
1秒前
大模型应助认真摆烂采纳,获得10
2秒前
2秒前
周代桃发布了新的文献求助10
2秒前
3秒前
长安完成签到,获得积分10
3秒前
李健的小迷弟应助maying0318采纳,获得10
4秒前
机灵安白完成签到,获得积分10
5秒前
烟花应助云雨采纳,获得10
6秒前
6秒前
6秒前
8秒前
sun发布了新的文献求助10
9秒前
星辰大海应助谢亚飞采纳,获得10
10秒前
太渊完成签到 ,获得积分10
11秒前
11秒前
sudaxia100发布了新的文献求助10
12秒前
12秒前
13秒前
Akim应助李天采纳,获得10
15秒前
小蘑菇应助可口可乐采纳,获得10
15秒前
17秒前
18秒前
桐桐应助zmnzmnzmn采纳,获得10
18秒前
酷炫的八宝粥完成签到,获得积分10
18秒前
19秒前
冷酷雅容发布了新的文献求助10
22秒前
脑洞疼应助chen采纳,获得30
22秒前
jinyu发布了新的文献求助10
22秒前
云母完成签到 ,获得积分10
23秒前
liangliu发布了新的文献求助10
23秒前
23秒前
咸鱼不翻身完成签到,获得积分10
23秒前
高兴的老黑完成签到,获得积分10
24秒前
25秒前
25秒前
风趣霆完成签到,获得积分10
25秒前
25秒前
赘婿应助科研通管家采纳,获得10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835