Tension–compression asymmetry in amorphous silicon

材料科学 脆性 复合材料 抗压强度 极限抗拉强度 结构材料 压缩(物理) 各向同性 无定形固体 剪切(地质) 剪切模量 不对称 张力(地质) 冶金 结晶学 物理 光学 化学 量子力学
作者
Yuecun Wang,Jun Ding,Fan Zhao,Lin Tian,Meng Li,Huanhuan Lu,Yongqiang Zhang,E. Ma,Ju Li,Zhiwei Shan
出处
期刊:Nature Materials [Springer Nature]
卷期号:20 (10): 1371-1377 被引量:59
标识
DOI:10.1038/s41563-021-01017-z
摘要

Hard and brittle materials usually exhibit a much lower strength when loaded in tension than in compression. However, this common-sense behaviour may not be intrinsic to these materials, but arises from their higher flaw sensitivity to tensile loading. Here, we demonstrate a reversed and unusually pronounced tension–compression asymmetry (tensile strength exceeds compressive strength by a large margin) in submicrometre-sized samples of isotropic amorphous silicon. The abnormal asymmetry in the yield strength and anelasticity originates from the reduction in shear modulus and the densification of the shear-activated configuration under compression, altering the magnitude of the activation energy barrier for elementary shear events in amorphous Si. In situ coupled electrical tests corroborate that compressive strains indeed cause increased atomic coordination (metallization) by transforming some local structures from sp3-bonded semiconducting motifs to more metallic-like sites, lending credence to the mechanism we propose. This finding opens up an unexplored regime of intrinsic tension–compression asymmetry in materials. Submicrometre-sized amorphous silicon samples show an unusually large tensile strength relative to the compressive strength, which is due to the reduced shear modulus and the activation energy barrier for shear transformations under compression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee完成签到 ,获得积分10
1秒前
小医发布了新的文献求助10
2秒前
余淮完成签到,获得积分10
2秒前
子卿完成签到,获得积分10
2秒前
活力的曲奇完成签到 ,获得积分10
3秒前
3秒前
冰冰完成签到,获得积分10
4秒前
刘一完成签到 ,获得积分10
4秒前
哈哈哈完成签到 ,获得积分10
5秒前
6秒前
Maxw发布了新的文献求助10
6秒前
cc完成签到,获得积分10
6秒前
WangDeLi完成签到 ,获得积分10
7秒前
快乐修勾完成签到 ,获得积分10
7秒前
Depeng完成签到,获得积分10
7秒前
8秒前
小二郎应助Bin_Liu采纳,获得10
11秒前
茶多酚完成签到,获得积分10
11秒前
饼饼完成签到,获得积分10
12秒前
squeak完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
卟啉光环完成签到,获得积分10
13秒前
14秒前
adovj完成签到 ,获得积分10
14秒前
帅气善斓应助杜祖盛采纳,获得10
16秒前
卟啉光环发布了新的文献求助10
16秒前
hanshishengye完成签到 ,获得积分10
16秒前
17秒前
18秒前
慕青应助倾听采纳,获得10
20秒前
Waris完成签到 ,获得积分10
20秒前
那会是永远完成签到,获得积分10
21秒前
Silole完成签到,获得积分10
22秒前
22秒前
天天快乐应助miao采纳,获得10
25秒前
大个应助QQ采纳,获得10
27秒前
INGRID完成签到,获得积分10
29秒前
29秒前
urologywang完成签到 ,获得积分10
31秒前
Tohka完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603571
求助须知:如何正确求助?哪些是违规求助? 4688556
关于积分的说明 14854576
捐赠科研通 4693743
什么是DOI,文献DOI怎么找? 2540863
邀请新用户注册赠送积分活动 1507086
关于科研通互助平台的介绍 1471806