Spatio-Contextual Deep Network-Based Multimodal Pedestrian Detection for Autonomous Driving

计算机科学 人工智能 特征提取 特征(语言学) 行人检测 水准点(测量) 深度学习 计算机视觉 RGB颜色模型 模式识别(心理学) 行人 工程类 哲学 地理 大地测量学 语言学 运输工程
作者
Kinjal Dasgupta,Arindam Das,Sudip Das,Ujjwal Bhattacharya,Senthil Yogamani
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 15940-15950 被引量:65
标识
DOI:10.1109/tits.2022.3146575
摘要

Pedestrian Detection is the most critical module of an Autonomous Driving system. Although a camera is commonly used for this purpose, its quality degrades severely in low-light night time driving scenarios. On the other hand, the quality of a thermal camera image remains unaffected in similar conditions. This paper proposes an end-to-end multimodal fusion model for pedestrian detection using RGB and thermal images. Its novel spatio-contextual deep network architecture is capable of exploiting the multimodal input efficiently. It consists of two distinct deformable ResNeXt-50 encoders for feature extraction from the two modalities. Fusion of these two encoded features takes place inside a multimodal feature embedding module (MuFEm) consisting of several groups of a pair of Graph Attention Network and a feature fusion unit. The output of the last feature fusion unit of MuFEm is subsequently passed to two CRFs for their spatial refinement. Further enhancement of the features is achieved by applying channel-wise attention and extraction of contextual information with the help of four RNNs traversing in four different directions. Finally, these feature maps are used by a single-stage decoder to generate the bounding box of each pedestrian and the score map. We have performed extensive experiments of the proposed framework on three publicly available multimodal pedestrian detection benchmark datasets, namely KAIST, CVC-14, and UTokyo. The results on each of them improved the respective state-of-the-art performance. A short video giving an overview of this work along with its qualitative results can be seen at https://youtu.be/FDJdSifuuCs . Our source code will be released upon publication of the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小馒头发布了新的文献求助10
1秒前
景飞丹发布了新的文献求助10
1秒前
希夷发布了新的文献求助20
2秒前
fff发布了新的文献求助10
2秒前
飞快的三问完成签到,获得积分10
2秒前
孤独靖柏完成签到,获得积分20
2秒前
2秒前
TL完成签到,获得积分10
3秒前
3秒前
4秒前
lwf完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
kangkirk完成签到,获得积分10
7秒前
ljq完成签到,获得积分10
7秒前
隐形的尔烟完成签到,获得积分10
7秒前
小蘑菇应助skywalker采纳,获得10
8秒前
小飞发布了新的文献求助10
8秒前
8秒前
8秒前
小杰发布了新的文献求助10
9秒前
希望天下0贩的0应助Mastar采纳,获得30
9秒前
二立发布了新的文献求助10
9秒前
10秒前
10秒前
wenhao发布了新的文献求助10
10秒前
liubeibei完成签到,获得积分10
10秒前
晓星残月完成签到,获得积分10
10秒前
Jasper应助机智典采纳,获得10
11秒前
慕青应助SevenKing采纳,获得10
11秒前
跳跃毒娘发布了新的文献求助10
11秒前
11秒前
李健应助晶晶采纳,获得10
11秒前
共享精神应助久晴采纳,获得10
12秒前
1221完成签到,获得积分10
12秒前
123456发布了新的文献求助10
12秒前
流年羽发布了新的文献求助30
13秒前
13秒前
Phosphene应助故意的篮球采纳,获得10
14秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075498
求助须知:如何正确求助?哪些是违规求助? 2728589
关于积分的说明 7505148
捐赠科研通 2376734
什么是DOI,文献DOI怎么找? 1260264
科研通“疑难数据库(出版商)”最低求助积分说明 610928
版权声明 597149