PI3K/AKT/mTOR通路
自噬
蛋白激酶B
LY294002型
细胞凋亡
标记法
再灌注损伤
人参皂甙
药理学
免疫印迹
化学
医学
缺血
内科学
生物化学
病理
人参
基因
替代医学
作者
Guo‐Wei Qin,Pan Lu,Li Peng,Wei Jiang
标识
DOI:10.1142/s0192415x21500907
摘要
Myocardial ischemia/reperfusion injury (MIRI) is the major cause of myocardial cell damage in acute myocardial infarction, and its treatment remains a clinical challenge. Ginsenoside Rb1 showed protective effects on the cardiovascular system; however, the underlying mechanism remains largely unclear. Effects of Ginsenoside Rb1 on rat MIRI-induced myocardial infarct size were evaluated through TTC staining. TUNEL assay and flow cytometry analysis were employed to estimate cell apoptosis. Apoptosis, autophagy and PI3K/Akt/mTOR pathway-related proteins were estimated via western blot. Expression of Beclin1 in myocardial tissues were examined by immunohistochemical analysis. Expression levels of IL-1[Formula: see text], TNF-[Formula: see text] and IL-6 were tested by enzyme-linked immunosorbent assay (ELISA). Here, we found that Ginsenoside Rb1 treatment not only alleviated MIRI in rats but also protected H9C2 cells against hypoxia/reoxygenation induced damage. Ginsenoside Rb1 abolished the MIRI-induced activation of autophagy. Meanwhile, we found that treatment of 3-MA (autophagy inhibitor) could enhance the protective effects of Ginsenoside Rb1 on H9C2 cells during H/R. Moreover, Ginsenoside Rb1 treatment resulted in the activation of the PI3K/Akt/mTOR pathway, and treatment of LY294002 (PI3K/Akt pathway repressor) abolished the protective effects of Ginsenoside Rb1 on myocardial in vitro and in vivo. Our results suggest that Ginsenoside Rb1 functions as a protector against MIRI by repressing cardiomyocyte autophagy through the PI3K/Akt/mTOR signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI