FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classification

计算机科学 人工智能 模态(人机交互) 模式识别(心理学) 构造(python库) 特征(语言学) 情态动词 支持向量机 阶段(地层学) 机器学习 哲学 古生物学 生物 化学 高分子化学 程序设计语言 语言学
作者
Peng Tang,Xintong Yan,Yang Nan,Xiang Shao,Sebastian Krammer,Tobias Lasser
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:76: 102307-102307 被引量:39
标识
DOI:10.1016/j.media.2021.102307
摘要

Skin disease is one of the most common diseases in the world. Deep learning-based methods have achieved excellent skin lesion recognition performance, most of which are based on only dermoscopy images. In recent works that use multi-modality data (patient's meta-data, clinical images, and dermoscopy images), the methods adopt a one-stage fusion approach and only optimize the information fusion at the feature level. These methods do not use information fusion at the decision level and thus cannot fully use the data of all modalities. This work proposes a novel two-stage multi-modal learning algorithm (FusionM4Net) for multi-label skin diseases classification. At the first stage, we construct a FusionNet, which exploits and integrates the representation of clinical and dermoscopy images at the feature level, and then uses a Fusion Scheme 1 to conduct the information fusion at the decision level. At the second stage, to further incorporate the patient's meta-data, we propose a Fusion Scheme 2, which integrates the multi-label predictive information from the first stage and patient's meta-data information to train an SVM cluster. The final diagnosis is formed by the fusion of the predictions from the first and second stages. Our algorithm was evaluated on the seven-point checklist dataset, a well-established multi-modality multi-label skin disease dataset. Without using the patient's meta-data, the proposed FusionM4Net's first stage (FusionM4Net-FS) achieved an average accuracy of 75.7% for multi-classification tasks and 74.9% for diagnostic tasks, which is more accurate than other state-of-the-art methods. By further fusing the patient's meta-data at FusionM4Net's second stage (FusionM4Net-SS), the entire FusionM4Net finally boosts the average accuracy to 77.0% and the diagnostic accuracy to 78.5%, which indicates its robust and excellent classification performance on the label-imbalanced dataset. The corresponding code is available at: https://github.com/pixixiaonaogou/MLSDR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助嘎嘎咻采纳,获得10
1秒前
1秒前
2秒前
Hello应助11266采纳,获得10
3秒前
3秒前
葡萄夹子给葡萄夹子的求助进行了留言
3秒前
hahaha123完成签到 ,获得积分10
4秒前
杜小杜发布了新的文献求助10
6秒前
绍成发布了新的文献求助10
7秒前
桐桐应助sponge采纳,获得10
9秒前
薯片完成签到,获得积分20
11秒前
ding应助何必采纳,获得10
11秒前
11秒前
w。发布了新的文献求助10
11秒前
Akim应助HK采纳,获得10
13秒前
九香虫发布了新的文献求助10
13秒前
嘀嘀嘀发布了新的文献求助10
14秒前
15秒前
11266完成签到,获得积分10
15秒前
CipherSage应助AQI采纳,获得10
15秒前
Gen_cexon发布了新的文献求助10
16秒前
小白发布了新的文献求助100
18秒前
李健应助lianglimay采纳,获得10
18秒前
18秒前
深情安青应助w。采纳,获得10
20秒前
11266发布了新的文献求助10
20秒前
白雪皑皑完成签到 ,获得积分10
21秒前
萧水白应助qq采纳,获得10
22秒前
22秒前
23秒前
赘婿应助简单茗采纳,获得10
24秒前
25秒前
25秒前
赘婿应助zhouyi采纳,获得10
27秒前
28秒前
揍鱼完成签到 ,获得积分10
28秒前
sponge发布了新的文献求助10
29秒前
AQI发布了新的文献求助10
30秒前
shen5920发布了新的文献求助10
31秒前
兴奋的故事完成签到,获得积分10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261135
求助须知:如何正确求助?哪些是违规求助? 2901993
关于积分的说明 8318609
捐赠科研通 2571798
什么是DOI,文献DOI怎么找? 1397250
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632216