FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classification

计算机科学 人工智能 模态(人机交互) 模式识别(心理学) 构造(python库) 特征(语言学) 情态动词 支持向量机 阶段(地层学) 机器学习 哲学 古生物学 生物 化学 高分子化学 程序设计语言 语言学
作者
Peng Tang,Xintong Yan,Yang Nan,Xiang Shao,Sebastian Krammer,Tobias Lasser
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:76: 102307-102307 被引量:39
标识
DOI:10.1016/j.media.2021.102307
摘要

Skin disease is one of the most common diseases in the world. Deep learning-based methods have achieved excellent skin lesion recognition performance, most of which are based on only dermoscopy images. In recent works that use multi-modality data (patient's meta-data, clinical images, and dermoscopy images), the methods adopt a one-stage fusion approach and only optimize the information fusion at the feature level. These methods do not use information fusion at the decision level and thus cannot fully use the data of all modalities. This work proposes a novel two-stage multi-modal learning algorithm (FusionM4Net) for multi-label skin diseases classification. At the first stage, we construct a FusionNet, which exploits and integrates the representation of clinical and dermoscopy images at the feature level, and then uses a Fusion Scheme 1 to conduct the information fusion at the decision level. At the second stage, to further incorporate the patient's meta-data, we propose a Fusion Scheme 2, which integrates the multi-label predictive information from the first stage and patient's meta-data information to train an SVM cluster. The final diagnosis is formed by the fusion of the predictions from the first and second stages. Our algorithm was evaluated on the seven-point checklist dataset, a well-established multi-modality multi-label skin disease dataset. Without using the patient's meta-data, the proposed FusionM4Net's first stage (FusionM4Net-FS) achieved an average accuracy of 75.7% for multi-classification tasks and 74.9% for diagnostic tasks, which is more accurate than other state-of-the-art methods. By further fusing the patient's meta-data at FusionM4Net's second stage (FusionM4Net-SS), the entire FusionM4Net finally boosts the average accuracy to 77.0% and the diagnostic accuracy to 78.5%, which indicates its robust and excellent classification performance on the label-imbalanced dataset. The corresponding code is available at: https://github.com/pixixiaonaogou/MLSDR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张磊完成签到,获得积分10
刚刚
冷艳的太君完成签到,获得积分10
1秒前
1秒前
科目三应助wwwww采纳,获得10
2秒前
2秒前
2秒前
3秒前
CH完成签到 ,获得积分10
3秒前
xiuxiu_27发布了新的文献求助10
4秒前
April发布了新的文献求助10
4秒前
打打应助核桃采纳,获得10
4秒前
4秒前
elena发布了新的文献求助10
4秒前
现代的战斗机完成签到,获得积分10
4秒前
刘星星发布了新的文献求助10
5秒前
萧秋灵完成签到,获得积分10
5秒前
5秒前
6秒前
YaoX完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
YE发布了新的文献求助10
7秒前
7秒前
8秒前
张肥肥完成签到 ,获得积分20
8秒前
明亮的斩关注了科研通微信公众号
8秒前
科研通AI5应助搞怪的人龙采纳,获得10
8秒前
9秒前
xiuxiu_27完成签到 ,获得积分10
9秒前
李健应助qym采纳,获得10
10秒前
风趣的爆米花完成签到,获得积分20
10秒前
韭菜发布了新的文献求助10
10秒前
10秒前
10秒前
yzxzdm完成签到 ,获得积分10
11秒前
小破仁666发布了新的文献求助10
11秒前
11秒前
英姑应助优秀的逊采纳,获得10
12秒前
ccc完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740