已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparing Performance of Ensemble-Based Machine Learning Algorithms to Identify Potential Obesity Risk Factors from Public Health Datasets

肥胖 老年学 医学 体质指数 公共卫生 疾病 人口 健康促进 环境卫生 内科学 病理 护理部
作者
Ayan Chatterjee,Martin Gerdes,Andreas Prinz,Santiago Martínez
出处
期刊:Advances in intelligent systems and computing 卷期号:: 253-269 被引量:8
标识
DOI:10.1007/978-981-15-9927-9_26
摘要

Societal factors such as globalization, supermarket growth, rapid unplanned urbanization, sedentary lifestyle, economical distribution, and social position gradually develop behavioral risk factors in humans. Behavioral risk factors are unhealthy habits (consumption of tobacco and alcohol), improper diet (consumption of high calorific discretionary fast foods, sweet beverages), and physical inactivity. The behavioral risks may lead to physiological risks, body–energy imbalance. Obesity is one of the foremost lifestyle diseases that leads to other health conditions, such as cardiovascular disease (CVDs), chronic obstructive pulmonary disease (COPD), cancer, diabetes type II, hypertension, and depression. It is not restricted within the boundary of age and socio-economic background. “World health organization (WHO)” has predicted that lifestyle diseases will claim 71–73% of the global death, by the end of 2020. It can be prevented with proper identification of associated risk factors and appropriate behavioral intervention plans. The key determinants of obesity are—a. age, b. weight, c. height, and d. body mass index (BMI). This paper addresses the potential of ensemble machine learning approaches to assess the associated risk factors of obesity through the evaluation of existing, publicly accessible health datasets, such as “Kaggle”, and “UCI”. Followed by, we compared our identified risk factors with the obtained risk factors from literature study. In future, we are intending to reuse the obtained knowledge to collect data from a controlled trial of adult population (age between 20 and 60) in south Norway to generate personalized, contextual, and behavioral recommendations with a smart electronic coaching (eCoaching) system for behavioral intervention for the promotion of healthy lifestyle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
闹闹加油发布了新的文献求助10
刚刚
柾国完成签到,获得积分20
1秒前
魔幻的驳发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
上官若男应助月光入梦采纳,获得10
4秒前
8R60d8应助落后的安寒采纳,获得10
5秒前
xjx发布了新的文献求助80
6秒前
7秒前
8R60d8应助夏虫采纳,获得10
7秒前
Coco椰给Coco椰的求助进行了留言
8秒前
充电宝应助心旷神怡采纳,获得10
8秒前
8秒前
8秒前
狄蹇完成签到,获得积分20
8秒前
yy完成签到,获得积分10
9秒前
Soey发布了新的文献求助10
10秒前
zhongu应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
NINGYII应助科研通管家采纳,获得50
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
wkl发布了新的文献求助10
14秒前
yznfly应助mjf111采纳,获得20
15秒前
qq发布了新的文献求助10
15秒前
bkagyin应助Flanker采纳,获得10
15秒前
白日焰火发布了新的文献求助10
17秒前
17秒前
传奇3应助daqing1725采纳,获得30
20秒前
领导范儿应助qq采纳,获得10
22秒前
22秒前
Steven发布了新的文献求助10
24秒前
dssdadadds发布了新的文献求助10
27秒前
张aa完成签到 ,获得积分20
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172