Comparing Performance of Ensemble-Based Machine Learning Algorithms to Identify Potential Obesity Risk Factors from Public Health Datasets

肥胖 老年学 医学 体质指数 公共卫生 疾病 人口 健康促进 环境卫生 内科学 病理 护理部
作者
Ayan Chatterjee,Martin Gerdes,Andreas Prinz,Santiago Martínez
出处
期刊:Advances in intelligent systems and computing 卷期号:: 253-269 被引量:8
标识
DOI:10.1007/978-981-15-9927-9_26
摘要

Societal factors such as globalization, supermarket growth, rapid unplanned urbanization, sedentary lifestyle, economical distribution, and social position gradually develop behavioral risk factors in humans. Behavioral risk factors are unhealthy habits (consumption of tobacco and alcohol), improper diet (consumption of high calorific discretionary fast foods, sweet beverages), and physical inactivity. The behavioral risks may lead to physiological risks, body–energy imbalance. Obesity is one of the foremost lifestyle diseases that leads to other health conditions, such as cardiovascular disease (CVDs), chronic obstructive pulmonary disease (COPD), cancer, diabetes type II, hypertension, and depression. It is not restricted within the boundary of age and socio-economic background. “World health organization (WHO)” has predicted that lifestyle diseases will claim 71–73% of the global death, by the end of 2020. It can be prevented with proper identification of associated risk factors and appropriate behavioral intervention plans. The key determinants of obesity are—a. age, b. weight, c. height, and d. body mass index (BMI). This paper addresses the potential of ensemble machine learning approaches to assess the associated risk factors of obesity through the evaluation of existing, publicly accessible health datasets, such as “Kaggle”, and “UCI”. Followed by, we compared our identified risk factors with the obtained risk factors from literature study. In future, we are intending to reuse the obtained knowledge to collect data from a controlled trial of adult population (age between 20 and 60) in south Norway to generate personalized, contextual, and behavioral recommendations with a smart electronic coaching (eCoaching) system for behavioral intervention for the promotion of healthy lifestyle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助豆沙卷采纳,获得10
2秒前
小蘑菇应助Ronggaz采纳,获得10
2秒前
南巷完成签到,获得积分10
2秒前
俏皮的以晴完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助禾盒采纳,获得10
3秒前
mjn404发布了新的文献求助100
4秒前
搜集达人应助yaoyao采纳,获得10
4秒前
小马甲应助Rainstorm27采纳,获得10
6秒前
8秒前
韩韩韩完成签到,获得积分20
9秒前
一一完成签到,获得积分10
10秒前
10秒前
12秒前
百事可乐完成签到,获得积分20
13秒前
木木酱完成签到,获得积分10
14秒前
15秒前
端庄千青发布了新的文献求助10
15秒前
Ronggaz发布了新的文献求助10
17秒前
法外狂徒发布了新的文献求助10
17秒前
Rainstorm27发布了新的文献求助10
19秒前
yaoyao发布了新的文献求助10
19秒前
我是老大应助端庄千青采纳,获得10
20秒前
卡乐瑞咩吹可完成签到,获得积分10
21秒前
韩韩韩发布了新的文献求助20
22秒前
羊羊完成签到,获得积分10
22秒前
24秒前
yuki完成签到,获得积分10
25秒前
xyr发布了新的文献求助10
26秒前
26秒前
科目三应助小羊要加油采纳,获得10
27秒前
27秒前
ocean应助西粤学采纳,获得20
31秒前
32秒前
orixero应助陶醉铁身采纳,获得30
32秒前
彳亍1117发布了新的文献求助10
35秒前
李健应助Rainstorm27采纳,获得10
35秒前
ybb发布了新的文献求助10
36秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055393
求助须知:如何正确求助?哪些是违规求助? 2712170
关于积分的说明 7430007
捐赠科研通 2356998
什么是DOI,文献DOI怎么找? 1248385
科研通“疑难数据库(出版商)”最低求助积分说明 606700
版权声明 596093