Unveiling the multilevel structure of midgap states in Sb-doped MoX2 (X=S, Se, Te

兴奋剂 价(化学) 带隙 材料科学 电子结构 费米能级 结晶学 杂质 物理 凝聚态物理 化学 核物理学 量子力学 电子
作者
Marcos G. Menezes,Saif Ullah
出处
期刊:Physical review [American Physical Society]
卷期号:104 (12) 被引量:6
标识
DOI:10.1103/physrevb.104.125438
摘要

In this study, we use first-principles calculations to investigate the electronic and structural properties of $\text{Mo}{X}_{2}$ $(X=\text{S}, \mathrm{Se}, \mathrm{Te})$ monolayers doped with substitutional Sb atoms, with a central focus on the Sb(Mo) substitution. In ${\mathrm{MoS}}_{2}$, we observe that this substitution is energetically favored under S-rich conditions, where the ${\mathrm{S}}_{2}$ gaseous phase is likely to be present. This result is compatible with a recent experimental observation in Sb-doped ${\mathrm{MoS}}_{2}$ nanosheets grown by chemical vapor deposition. A similar behavior is found in ${\mathrm{MoSe}}_{2}$, but in ${\mathrm{MoTe}}_{2}$ the Sb(Mo) substitution is less likely to occur due to the possible absence of gaseous Te phases in experimental setups. In all cases, several impurity-induced states are found inside the band gap, with energies that span the entire gap. The Fermi energy is pinned a few tenths of eV above the top of the valence band, suggesting a predominant $p$-type behavior, and gap energies are slightly increased in comparison to the pristine systems. The orbital nature of these states is further investigated with projected and local density of states calculations, which reveal similarities to defect states induced by single Mo vacancies as well as their rehybridization with the $5s$ orbital from Sb. Additionally, we find that the band gap of the doped systems is increased in comparison with the pristine materials, in contrast with a previous calculation in Sb-doped ${\mathrm{MoS}}_{2}$ that predicts a gap reduction with a different assignment of valence band and impurity levels. We discuss the similarities, discrepancies, and the limitations of both calculations. We also speculate possible reasons for the experimentally observed redshifts of the $A$ and $B$ excitons in the presence of the Sb dopants in ${\mathrm{MoS}}_{2}$. We hope that these results spark future investigations on other aspects of the problem, particularly those concerning the effects of disorder and electron-hole interaction, and continue to reveal the potential of doped transition-metal dichalcogenides for applications in optoelectronic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxx发布了新的文献求助10
刚刚
Freddy完成签到 ,获得积分10
刚刚
tulips完成签到 ,获得积分10
刚刚
洁净的天德完成签到,获得积分10
1秒前
Sunsets完成签到 ,获得积分10
1秒前
隔水一路秋完成签到,获得积分10
2秒前
amanda完成签到,获得积分10
3秒前
Cc完成签到 ,获得积分10
3秒前
飞云发布了新的文献求助30
4秒前
刘传宏完成签到,获得积分10
4秒前
dujinjun完成签到,获得积分10
5秒前
zuoyou完成签到,获得积分10
5秒前
5秒前
ww完成签到,获得积分10
5秒前
tomorrow完成签到,获得积分10
6秒前
慕青应助ju00采纳,获得10
6秒前
8秒前
柒tt完成签到,获得积分10
8秒前
haozi完成签到,获得积分10
10秒前
开心的眼睛完成签到,获得积分10
11秒前
甜美的芷完成签到,获得积分20
11秒前
ding应助爱看文献的小朱采纳,获得10
12秒前
yaowenjun完成签到,获得积分10
13秒前
玉米侠完成签到 ,获得积分10
14秒前
DreamRunner0410完成签到,获得积分10
15秒前
Orange应助甜美的芷采纳,获得10
16秒前
龙抬头完成签到,获得积分10
16秒前
亮亮完成签到,获得积分10
16秒前
托托完成签到,获得积分10
17秒前
qpzn完成签到,获得积分10
17秒前
Panacea完成签到 ,获得积分10
17秒前
浮游应助霸气咖啡豆采纳,获得10
17秒前
开心的小熊猫完成签到,获得积分10
18秒前
莫愁完成签到,获得积分10
18秒前
不能吃太饱完成签到 ,获得积分10
18秒前
20秒前
zhangxin完成签到,获得积分10
20秒前
Whenryuan完成签到 ,获得积分10
20秒前
鹿笙完成签到 ,获得积分20
20秒前
打倒方块完成签到 ,获得积分10
23秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584888
求助须知:如何正确求助?哪些是违规求助? 4668769
关于积分的说明 14771947
捐赠科研通 4616207
什么是DOI,文献DOI怎么找? 2530267
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590