Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway

核黄素 代谢工程 磷酸戊糖途径 生物化学 枯草芽孢杆菌 体内 化学 丙酮酸钠 工业发酵 发酵 生物 新陈代谢 糖酵解 生物技术 细菌 遗传学
作者
Mengxue Zhang,Xingcong Zhao,Xi Chen,Mingyue Li,Xuedong Wang
出处
期刊:Biotechnology Letters [Springer Nature]
卷期号:43 (12): 2209-2216 被引量:6
标识
DOI:10.1007/s10529-021-03190-2
摘要

The production of riboflavin with Bacillus subtilis, is an established process, however it is yet to be fully optimized. The aim of this study was to explore how riboflavin yields can be improved via in vitro and in vivo metabolic engineering modification of the pentose phosphate pathway (PPP).In vitro, glucose was replaced with sodium gluconate to enhance PPP. Flask tests showed that the riboflavin titer increased from 0.64 to 0.87 g/L. The results revealed that the direct use of sodium gluconate could benefit riboflavin production. In vivo, gntP (encoding gluconate permease) was overexpressed to improve sodium gluconate uptake. The riboflavin titer reached 1.00 g/L with the mutant B. subtilis RF01. Ultimately, the fermentation verification of the engineered strain was carried out in a 7-L fermenter, with the increased riboflavin titer validating this approach.The combination of metabolic engineering modifications in vitro and in vivo was confirmed to promote riboflavin production efficiently by increasing PPP and has great potential for industrial application. This work is aimed to explore how to improve the riboflavin yield by the rational renovation of the pentose phosphate pathway (PPP). In vitro, metabolic engineering mainly uses sodium gluconate as a carbon source instead of glucose, and in vivo, metabolic engineering mainly includes the overexpression of sodium gluconate utility-related genes. The effect of sodium gluconate on cell growth, riboflavin production was investigated in the flasks and fermenter scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
杳鸢应助Sue采纳,获得10
1秒前
发条发布了新的文献求助10
1秒前
科研通AI5应助微风徐徐采纳,获得10
1秒前
小奕应助爱听歌的亦玉采纳,获得10
1秒前
asd1999完成签到,获得积分10
2秒前
2秒前
羔羊的儿子完成签到,获得积分10
2秒前
科研通AI5应助静水流深采纳,获得200
2秒前
2秒前
香蕉觅云应助Kikisman采纳,获得10
3秒前
4秒前
清风完成签到,获得积分10
5秒前
5251发布了新的文献求助10
5秒前
共享精神应助Hommand_藏山采纳,获得10
5秒前
脆脆鲨发布了新的文献求助10
5秒前
科研通AI5应助lisa采纳,获得30
5秒前
科目三应助聪明熠彤采纳,获得10
6秒前
马里奥好难完成签到 ,获得积分10
6秒前
aaa发布了新的文献求助10
7秒前
7秒前
小张发布了新的文献求助30
7秒前
善良高山完成签到 ,获得积分10
8秒前
wanci应助谦让友绿采纳,获得10
8秒前
Jason发布了新的文献求助10
9秒前
9秒前
丘比特应助桃青采纳,获得10
10秒前
Rosyyyy完成签到,获得积分10
10秒前
在水一方应助JAY采纳,获得10
10秒前
时空虫洞完成签到 ,获得积分10
10秒前
10秒前
10秒前
Su关注了科研通微信公众号
10秒前
11秒前
kkscanl完成签到 ,获得积分10
11秒前
赘婿应助Ubuntu采纳,获得20
12秒前
12秒前
Rosyyyy发布了新的文献求助10
12秒前
养乐多发布了新的文献求助10
13秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474656
求助须知:如何正确求助?哪些是违规求助? 3066757
关于积分的说明 9100781
捐赠科研通 2758095
什么是DOI,文献DOI怎么找? 1513343
邀请新用户注册赠送积分活动 699504
科研通“疑难数据库(出版商)”最低求助积分说明 699016