生物传感器
纳米技术
表面等离子共振
计算机科学
食品安全
生化工程
分析物
材料科学
化学
纳米颗粒
工程类
食品科学
物理化学
作者
Weizheng Wang,Youngsang You,Sundaram Gunasekaran
标识
DOI:10.1111/1541-4337.12843
摘要
Abstract Ensuring consistently high quality and safety is paramount to food producers and consumers alike. Wet chemistry and microbiological methods provide accurate results, but those methods are not conducive to rapid, onsite testing needs. Hence, many efforts have focused on rapid testing for food quality and safety, including the development of various biosensors. Herein, we focus on a group of biosensors, which provide visually recognizable colorimetric signals within minutes and can be used onsite. Although there are different ways to achieve visual color‐change signals, we restrict our focus on sensors that exploit the localized surface plasmon resonance (LSPR) phenomenon of metal nanoparticles, primarily gold and silver nanoparticles. The typical approach in the design of LSPR biosensors is to conjugate biorecognition ligands on the surface of metal nanoparticles and allow the ligands to specifically recognize and bind the target analyte. This ligand–target binding reaction leads to a change in color of the test sample and a concomitant shift in the ultraviolet‐visual absorption peak. Various designs applying this and other signal generation schemes are reviewed with an emphasis on those applied for evaluating factors that compromise the quality and safety of food and agricultural products. The LSPR‐based colorimetric biosensing platform is a promising technology for enhancing food quality and safety. Aided by the advances in nanotechnology, this sensing technique lends itself easily for further development on field‐deployable platforms such as smartphones for onsite and end‐user applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI