聚类分析
混合模型
颗粒过滤器
期望最大化算法
高斯分布
协方差
相关聚类
算法
计算机科学
高斯滤波器
CURE数据聚类算法
模式识别(心理学)
数学
人工智能
数学优化
卡尔曼滤波器
统计
最大似然
物理
量子力学
图像(数学)
作者
Sehyun Yun,Renato Zanetti
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems
[Institute of Electrical and Electronics Engineers]
日期:2021-10-07
卷期号:58 (2): 1109-1118
被引量:4
标识
DOI:10.1109/taes.2021.3117655
摘要
New clustering methods are proposed to develop novel particle filters with Gaussian mixture models (PFGMM). In the PFGMM, the propagated samples are clustered to recover a Gaussian mixture model (GMM) using a clustering algorithm, which plays a fundamental role in the filter's performance. Two clustering methods are introduced that simultaneously minimize the covariance of each of the GMM components and maximize the likelihood function. Under the scenarios considered in this article, it is shown through numerical simulation that the PFGMMs with the proposed clustering algorithms lead to better performance than the PFGMM employing the K-means or the expectation-maximization algorithms as well as the regularized particle filter (PF) and the Gaussian sum PF.
科研通智能强力驱动
Strongly Powered by AbleSci AI