Capacitance model for nanowire gate-all-around tunneling field-effect-transistors

纳米线 量子隧道 电容 晶体管 场效应晶体管 材料科学 计算机模拟 光电子学 纳米技术 电压 物理 电气工程 工程类 机械 量子力学 电极
作者
Bin Lu,Dawei Wang,Yulei Chen,Yan Cui,Yuanhao Miao,Linpeng Dong
出处
期刊:Chinese Physics [Science Press]
卷期号:70 (21): 218501-218501 被引量:3
标识
DOI:10.7498/aps.70.20211128
摘要

The nanowire gate-all-around (GAA) structures with the nearly ultimate channel electrostatic integrity of the gate field can exhibit the best immunity to the short channel effect and drain-induced barrier lowering. Moreover, owing to the enhanced control efficiency of gate over the tunneling junction, the GAA-TFET also gives improved subthreshold swing and on-state current. Despite the excellent device performance, an accurate model is very significant for the practical application. Compared with the numerical methods which are usually time consuming and computationally inefficient, an analytical model could accelerate the device investigation and circuit design process. Even though some tunneling current models have already been reported for nanowire tunneling field-effect-transistors (TFETs), the model of the terminal capacitance is still an issue for nanowire TFETs. The capacitance is of great significance for the transient simulation. In this paper, a physical and analytical potential model considering both the source depletion region and the channel mobile charges, is developed for the GAA-TFETs. The results from the model are verified with the numerical simulations, and the excellent agreement between the two results indicates the validation of the proposed model. Based on the potential model, the terminal charge model and the capacitance model are further developed and also verified by the numerical simulations. The main inflection and variation of the terminal charges and capacitances with the biases can be predicted by our model. Besides, both the model results and the numerical simulations both demonstrate that the gate charge is dominated mainly by the drain charges and the contribution of the source charges can be almost neglected. This also leads to the very small gate-source capacitance and very large Miller capacitance in the TFET device. This will be detrimental to the performance of TFET-based digital circuits but can be mitigated with the hetero-oxide gate structure. The second order effects, such as the quantum confinement and traps, are ignored in this paper and can be taken into the core model in the future work. It should also be noted that there is no iterative process involved during the model derivation, thus the developed model can be easily applied to the widely used SPICE platform and will be useful in designing and investigating the GAA-TFET based circuits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分10
1秒前
1秒前
merlideng发布了新的文献求助10
1秒前
星点点发布了新的文献求助10
1秒前
机灵映雁完成签到,获得积分10
2秒前
学术牛马发布了新的文献求助10
2秒前
Notdodead应助聪慧的草丛采纳,获得40
3秒前
王红玉发布了新的文献求助10
3秒前
katsuras发布了新的文献求助10
4秒前
海晨完成签到,获得积分10
5秒前
想喝奶茶完成签到,获得积分10
6秒前
7秒前
思源应助忧心的不二采纳,获得10
7秒前
星辰大海应助wenwen采纳,获得10
7秒前
wmq完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
细细完成签到,获得积分10
9秒前
10秒前
月亮完成签到,获得积分10
11秒前
NexusExplorer应助katsuras采纳,获得10
11秒前
科研通AI2S应助merlideng采纳,获得10
11秒前
彭于晏应助刘思琪采纳,获得10
12秒前
仙林AK47完成签到,获得积分10
13秒前
荷月初六发布了新的文献求助20
14秒前
14秒前
材料与化工完成签到 ,获得积分10
15秒前
lls发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
发财小手完成签到,获得积分10
18秒前
英姑应助学术牛马采纳,获得10
18秒前
七堇完成签到,获得积分20
18秒前
搜集达人应助袁气小笼包采纳,获得10
19秒前
wenwen发布了新的文献求助10
20秒前
执着谷兰发布了新的文献求助10
20秒前
21秒前
发财小手发布了新的文献求助10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011199
求助须知:如何正确求助?哪些是违规求助? 3550895
关于积分的说明 11306713
捐赠科研通 3285098
什么是DOI,文献DOI怎么找? 1810962
邀请新用户注册赠送积分活动 886662
科研通“疑难数据库(出版商)”最低求助积分说明 811581