亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Capacitance model for nanowire gate-all-around tunneling field-effect-transistors

纳米线 量子隧道 电容 晶体管 场效应晶体管 材料科学 计算机模拟 光电子学 纳米技术 电压 物理 电气工程 工程类 机械 量子力学 电极
作者
Bin Lu,Dawei Wang,Yulei Chen,Yan Cui,Yuanhao Miao,Linpeng Dong
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:70 (21): 218501-218501 被引量:3
标识
DOI:10.7498/aps.70.20211128
摘要

The nanowire gate-all-around (GAA) structures with the nearly ultimate channel electrostatic integrity of the gate field can exhibit the best immunity to the short channel effect and drain-induced barrier lowering. Moreover, owing to the enhanced control efficiency of gate over the tunneling junction, the GAA-TFET also gives improved subthreshold swing and on-state current. Despite the excellent device performance, an accurate model is very significant for the practical application. Compared with the numerical methods which are usually time consuming and computationally inefficient, an analytical model could accelerate the device investigation and circuit design process. Even though some tunneling current models have already been reported for nanowire tunneling field-effect-transistors (TFETs), the model of the terminal capacitance is still an issue for nanowire TFETs. The capacitance is of great significance for the transient simulation. In this paper, a physical and analytical potential model considering both the source depletion region and the channel mobile charges, is developed for the GAA-TFETs. The results from the model are verified with the numerical simulations, and the excellent agreement between the two results indicates the validation of the proposed model. Based on the potential model, the terminal charge model and the capacitance model are further developed and also verified by the numerical simulations. The main inflection and variation of the terminal charges and capacitances with the biases can be predicted by our model. Besides, both the model results and the numerical simulations both demonstrate that the gate charge is dominated mainly by the drain charges and the contribution of the source charges can be almost neglected. This also leads to the very small gate-source capacitance and very large Miller capacitance in the TFET device. This will be detrimental to the performance of TFET-based digital circuits but can be mitigated with the hetero-oxide gate structure. The second order effects, such as the quantum confinement and traps, are ignored in this paper and can be taken into the core model in the future work. It should also be noted that there is no iterative process involved during the model derivation, thus the developed model can be easily applied to the widely used SPICE platform and will be useful in designing and investigating the GAA-TFET based circuits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你嵙这个期刊没买完成签到,获得积分10
刚刚
zmjmj发布了新的文献求助10
2秒前
9秒前
14秒前
Criminology34举报yuanjie求助涉嫌违规
17秒前
清秀的宝马完成签到 ,获得积分10
17秒前
比青云完成签到,获得积分10
20秒前
若宫伊芙完成签到,获得积分10
22秒前
英姑应助zmjmj采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
adkdad完成签到,获得积分10
30秒前
36秒前
37秒前
oooaini发布了新的文献求助10
41秒前
无花果应助bigalexwei采纳,获得10
41秒前
量子星尘发布了新的文献求助10
42秒前
42秒前
43秒前
44秒前
dywen完成签到,获得积分10
45秒前
不许焦绿o发布了新的文献求助10
46秒前
48秒前
村长发布了新的文献求助10
48秒前
50秒前
54秒前
oooaini完成签到,获得积分10
54秒前
55秒前
whh123完成签到 ,获得积分10
56秒前
56秒前
56秒前
Moonlight完成签到 ,获得积分10
58秒前
58秒前
bigalexwei发布了新的文献求助10
59秒前
李健的小迷弟应助oooaini采纳,获得10
59秒前
DrW完成签到,获得积分10
1分钟前
大白菜芥末菜完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664034
求助须知:如何正确求助?哪些是违规求助? 4856893
关于积分的说明 15107044
捐赠科研通 4822496
什么是DOI,文献DOI怎么找? 2581475
邀请新用户注册赠送积分活动 1535694
关于科研通互助平台的介绍 1493921