Deep Learning‐Enabled Identification of Autoimmune Encephalitis on 3D Multi‐Sequence MRI

磁共振成像 医学 接收机工作特性 自身免疫性脑炎 曲线下面积 脑炎 放射科 人工智能 算法 内科学 计算机科学 免疫学 病毒
作者
Yayun Xiang,Chun Zeng,Baiyun Liu,Weixiong Tan,Jiangfen Wu,Xiaofei Hu,Yongliang Han,Qi Luo,Junwei Gong,Junhang Liu,Yongmei Li
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (4): 1082-1092 被引量:10
标识
DOI:10.1002/jmri.27909
摘要

Autoimmune encephalitis (AE) is a noninfectious emergency with severe clinical attacks. It is difficult for the earlier diagnosis of acute AE due to the lack of antibody detection resources.To construct a deep learning (DL) algorithm using multi-sequence magnetic resonance imaging (MRI) for the identification of acute AE.Retrospective.One hundred and sixty AE patients (90 women; median age 36), 177 herpes simplex virus encephalitis (HSVE) (89 women; median age 39), and 184 healthy controls (HC) (95 women; median age 39) were included. Fifty-two patients from another site were enrolled for external validation.3.0 T; fast spin-echo (T1 WI, T2 WI, fluid attenuated inversion recovery imaging) and spin-echo echo-planar diffusion weighted imaging.Five DL models based on individual or combined four MRI sequences to classify the datasets as AE, HSVE, or HC. Reader experiment was further carried out by radiologists.The discriminative performance of different models was assessed using the area under the receiver operating characteristic curve (AUC). The optimal threshold cut-off was identified when sensitivity and specificity were maximized (sensitivity + specificity - 1) in the validation set. Classification performance using confusion matrices was reported to evaluate the diagnostic value of the models and the radiologists' assessments before being assessed by the paired t-test (P < 0.05 was considered significant).In the internal test set, the fusion model achieved the significantly greatest diagnostic performance than single-sequence DL models with AUCs of 0.828, 0.884, and 0.899 for AE, HSVE, and HC, respectively. The model demonstrated a consistently high performance in the external validation set with AUCs of 0.831 (AE), 0.882 (HSVE), and 0.892 (HC). The fusion model also demonstrated significantly higher performance than all radiologists in identifying AE (accuracy between the fuse model vs. average radiologist: 83% vs. 72%).The proposed DL algorithm derived from multi-sequence MRI provided desirable identification and classification of acute AE.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙橙橙完成签到,获得积分10
2秒前
Alex发布了新的文献求助10
3秒前
Yumeng发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
秦王不能死完成签到,获得积分10
5秒前
科研通AI5应助凯蒂采纳,获得10
6秒前
直率小霜完成签到,获得积分10
7秒前
陈博士发布了新的文献求助30
9秒前
13秒前
13秒前
李健的小迷弟应助shulei采纳,获得10
14秒前
科研通AI5应助舒心的高丽采纳,获得30
15秒前
itsserene发布了新的文献求助30
15秒前
无限达完成签到,获得积分10
16秒前
16秒前
16秒前
徐才发布了新的文献求助10
17秒前
手帕很忙完成签到,获得积分10
17秒前
泡泡发布了新的文献求助10
18秒前
凯蒂发布了新的文献求助10
19秒前
庄周完成签到,获得积分10
20秒前
FashionBoy应助长青采纳,获得10
21秒前
BJiAr发布了新的文献求助10
22秒前
万能图书馆应助haha采纳,获得10
24秒前
王三歲发布了新的文献求助10
26秒前
Orange应助泡泡采纳,获得10
27秒前
大模型应助fmk采纳,获得10
33秒前
33秒前
ATK20000完成签到 ,获得积分10
34秒前
cdercder应助光亮机器猫采纳,获得30
34秒前
自由的小土豆完成签到,获得积分10
35秒前
王三歲完成签到,获得积分10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
Akim应助科研通管家采纳,获得10
37秒前
Singularity应助科研通管家采纳,获得10
37秒前
37秒前
英姑应助科研通管家采纳,获得10
37秒前
英姑应助科研通管家采纳,获得10
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174