安普克
伊诺斯
内分泌学
内科学
血管内皮生长因子B
内皮功能障碍
肿瘤坏死因子α
一氧化氮
医学
糖尿病
内皮
血管内皮生长因子
内皮干细胞
蛋白激酶A
血管内皮生长因子A
一氧化氮合酶
生物
细胞生物学
激酶
生物化学
血管内皮生长因子受体
体外
作者
Zheyi Yan,Xiaoming Cao,Chunfang Wang,Sha Liu,Yanjie Li,Lu Gan,Wenjun Yan,Rui Guo,Dajun Zhao,Ji-Min Cao,Yong Xu
标识
DOI:10.1016/j.bcp.2021.114745
摘要
The repair of vascular endothelial cell dysfunction is an encouraging approach for the treatment of vascular complications associated with diabetes. It has been demonstrated that members of C1q/tumor necrosis factor-related protein (CTRP) family may improve endothelial function. Nevertheless, the protective properties of CTRPs in diabetic microvascular complications continue to be mostly unknown. Here, we demonstrate that the C1q-like globular domain of CTRP3, CTRP5, and CTRP9 (gCTRP3, 5, 9) exerted a vasorelaxant effect on the microvasculature, of which gCTRP3 was the most powerful one. In a murine model of type 2 diabetes mellitus, serum gCTRP3 level and endothelial function decreased markedly compared with controls. Two weeks of gCTRP3 treatment (0.5 μg/g/d) enhanced endothelium-dependent relaxation in microvessels, increased nitric oxide (NO·) production, and reduced retinal vascular leakage. In addition, Western blotting in human retinal microvascular endothelial cells indicated that gCTRP3 triggered AMP-activated protein kinase-α (AMPKα), hence increasing the endothelial NO synthase (eNOS) level and NO· production. In addition, incubation with gCTRP3 in vitro ameliorated the endothelial dysfunction induced by high glucose in the branch of the mesenteric artery. Blockade of either eNOS or AMPKα completely abolished the effects of gCTRP3 described above. Taken together, we demonstrate for the first time that gCTRP3 improves impaired vasodilatation of microvasculature in diabetes by ameliorating endothelial cell function through the AMPK/eNOS/NO· signaling pathway. This finding may suggest an effective intervention against diabetes-associated microvascular complications.
科研通智能强力驱动
Strongly Powered by AbleSci AI