已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study

微卫星不稳定性 医学 回顾性队列研究 接收机工作特性 内科学 癌症 微卫星 队列研究 队列 肿瘤科 胃肠病学 生物 遗传学 基因 等位基因
作者
Hannah Sophie Muti,Lara R. Heij,Gisela Keller,Meike Kohlruss,Rupert Langer,Bastian Dislich,Jae‐Ho Cheong,Young–Woo Kim,Hyunki Kim,Myeong‐Cherl Kook,David Cunningham,William Allum,Ruth E. Langley,Matthew Nankivell,Philip Quirke,Jeremy D. Hayden,Nicholas P. West,Andrew J. Irvine,Takaki Yoshikawa,Takashi Oshima,Ralf Huss,Bianca Grosser,Franco Roviello,Alessia D’Ignazio,Alexander Quaas,Hakan Alakus,Xiuxiang Tan,Alexander T. Pearson,Tom Luedde,Matthias Ebert,Dirk Jäger,Christian Trautwein,Nadine T. Gaisa,Heike I. Grabsch,Jakob Nikolas Kather
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:3 (10): e654-e664 被引量:94
标识
DOI:10.1016/s2589-7500(21)00133-3
摘要

BackgroundResponse to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status from routine histology slides.MethodsIn this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5.FindingsAcross the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522–0·737) to 0·836 (0·795–0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752–0·841) to 0·897 (0·513–0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676–0·794) to 0·863 (0·747–0·969) for detection of microsatellite instability and from 0·672 (0·403–0·989) to 0·859 (0·823–0·919) for detection of EBV status.InterpretationClassifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer.FundingGerman Cancer Aid and German Federal Ministry of Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
慕青应助风中的丝袜采纳,获得10
6秒前
深情安青应助风中的丝袜采纳,获得10
6秒前
6秒前
qi完成签到 ,获得积分10
6秒前
天上的云在偷偷看你完成签到 ,获得积分10
7秒前
9秒前
andrele发布了新的文献求助100
14秒前
Owen应助Lier采纳,获得10
16秒前
Nowind完成签到,获得积分10
17秒前
DreamRunner0410完成签到 ,获得积分10
21秒前
Orange应助小小谢采纳,获得10
23秒前
adearfish完成签到 ,获得积分10
25秒前
张小尤关注了科研通微信公众号
27秒前
28秒前
Steven发布了新的文献求助10
32秒前
十三发布了新的文献求助20
37秒前
学术白菜完成签到,获得积分20
39秒前
wanci应助yili采纳,获得10
39秒前
40秒前
40秒前
44秒前
学术白菜发布了新的文献求助10
44秒前
45秒前
朴实棒棒糖完成签到 ,获得积分10
46秒前
一口吃三个月亮完成签到,获得积分10
46秒前
碧蓝世界完成签到 ,获得积分10
48秒前
一切顺利发布了新的文献求助10
49秒前
yiryir完成签到 ,获得积分10
54秒前
快乐映秋完成签到,获得积分10
54秒前
1分钟前
冷酷芫完成签到,获得积分10
1分钟前
Flash完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
可爱的函函应助gunanshu采纳,获得10
1分钟前
QQQ发布了新的文献求助10
1分钟前
洁净之卉发布了新的文献求助30
1分钟前
大力夏瑶完成签到,获得积分20
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372785
求助须知:如何正确求助?哪些是违规求助? 2990376
关于积分的说明 8740624
捐赠科研通 2673964
什么是DOI,文献DOI怎么找? 1464800
科研通“疑难数据库(出版商)”最低求助积分说明 677675
邀请新用户注册赠送积分活动 669067