Automated emergent large vessel occlusion detection by artificial intelligence improves stroke workflow in a hub and spoke stroke system of care

医学 冲程(发动机) 缺血性中风 工作流程 内科学 心脏病学 缺血 数据库 计算机科学 机械工程 工程类
作者
Lucas Elijovich,David Dornbos,Christopher Nickele,Andrei V. Alexandrov,Violiza Inoa‐Acosta,Adam S Arthur,Daniel Hoit
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:14 (7): 704-708 被引量:34
标识
DOI:10.1136/neurintsurg-2021-017714
摘要

Emergent large vessel occlusion (ELVO) acute ischemic stroke is a time-sensitive disease.To describe our experience with artificial intelligence (AI) for automated ELVO detection and its impact on stroke workflow.We conducted a retrospective chart review of code stroke cases in which VizAI was used for automated ELVO detection. Patients with ELVO identified by VizAI were compared with patients with ELVO identified by usual care. Details of treatment, CT angiography (CTA) interpretation by blinded neuroradiologists, and stroke workflow metrics were collected. Univariate statistical comparisons and linear regression analysis were performed to quantify time savings for stroke metrics.Six hundred and eighty consecutive code strokes were evaluated by AI; 104 patients were diagnosed with ELVO during the study period. Forty-five patients with ELVO were identified by AI and 59 by usual care. Sixty-nine mechanical thrombectomies were performed.Median time from CTA to team notification was shorter for AI ELVOs (7 vs 26 min; p<0.001). Door to arterial puncture was faster for transfer patients with ELVO detected by AI versus usual care transfer patients (141 vs 185 min; p=0.027). AI yielded a time savings of 22 min for team notification and a 23 min reduction in door to arterial puncture for transfer patients.AI automated alerts can be incorporated into a comprehensive stroke center hub and spoke system of care. The use of AI to detect ELVO improves clinically meaningful stroke workflow metrics, resulting in faster treatment times for mechanical thrombectomy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nielu发布了新的文献求助10
1秒前
YJD完成签到,获得积分10
1秒前
贺知书完成签到,获得积分10
1秒前
小竹笋完成签到 ,获得积分10
1秒前
2秒前
djfnf发布了新的文献求助10
2秒前
甜的瓜发布了新的文献求助10
2秒前
2秒前
Phoenix完成签到,获得积分10
3秒前
3秒前
哈哈发布了新的文献求助10
3秒前
zzcres完成签到,获得积分10
4秒前
4秒前
美好盼雁完成签到,获得积分10
4秒前
纷纭完成签到,获得积分10
4秒前
5秒前
勤奋弋完成签到,获得积分10
5秒前
5秒前
小颖睡不醒完成签到,获得积分10
5秒前
5秒前
GH07355018完成签到,获得积分10
6秒前
sxr完成签到,获得积分10
6秒前
6秒前
胖丁发布了新的文献求助10
7秒前
sisi发布了新的文献求助10
7秒前
小冯发布了新的文献求助10
7秒前
脑洞疼应助感人的心采纳,获得10
8秒前
lin发布了新的文献求助10
8秒前
违规昵称完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
yang发布了新的文献求助10
11秒前
謓言发布了新的文献求助10
11秒前
格瑞格完成签到,获得积分10
12秒前
12秒前
13秒前
奥沙利楠发布了新的文献求助10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167791
求助须知:如何正确求助?哪些是违规求助? 2819164
关于积分的说明 7925456
捐赠科研通 2479083
什么是DOI,文献DOI怎么找? 1320632
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443