NIL integration using computational lithography for semiconductor device manufacturing

抵抗 纳米压印光刻 光刻 材料科学 平版印刷术 纳米技术 基质(水族馆) 光刻胶 下一代光刻 半导体器件制造 多重图案 计算机科学 光电子学 薄脆饼 电子束光刻 制作 图层(电子) 病理 地质学 替代医学 海洋学 医学
作者
Tsuyoshi Arai,Sentaro Aihara,Yuichiro Oguchi,Junichi Seki,Yoichi Matsuoka
标识
DOI:10.1117/12.2600797
摘要

Imprint lithography is an effective and well-known technique for replication of nano-scale features. Nanoimprint lithography (NIL) manufacturing equipment utilizes a patterning technology that involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. The technology faithfully reproduces patterns with a higher resolution and greater uniformity compared to those produced by photolithography equipment. Additionally, as this technology does not require an array of wide-diameter lenses and the expensive light sources necessary for advanced photolithography equipment, NIL equipment achieves a simpler, more compact design, allowing for multiple units to be clustered together for increased productivity. Previous studies have demonstrated NIL resolution better than 10nm, making the technology suitable for the printing of several generations of critical memory levels with a single mask. In addition, resist is applied only where necessary, thereby eliminating material waste. Computational technologies are still in the course of development for NIL. Only a few simulators are applicable to the nanoimprint process, and these simulators are desired by device manufacturers as part of their daily toolbox. The most challenging issue in NIL process simulation is the scale difference of each component of the system. The template pattern depth and the residual resist film thickness are generally of the order of a few tens of nanometers, while the process needs to work over the entire shot size, which is typically of the order of 10 mm square. This amounts to a scale difference of the order of 106. Therefore, in order to calculate the nanoimprint process with conventional fluid structure interaction (FSI) simulators, an enormous number of meshes is required, which results in computation times that are unacceptable. In this paper, we introduce a new process simulator which directly inputs the process parameters, simulates the whole imprinting process, and evaluates the quality of the resulting resist film. To overcome the scale differences, our simulator utilizes analytically integrated expressions which reduce the dimensions of the calculation region. In addition, the simulator can independently consider the positions of the droplets and calculate the droplet coalescence, thereby predicting the distribution of the non-fill areas which originate from the trapped gas between the droplets. The simulator has been applied to the actual NIL system and some examples of its applications are presented in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助嘟嘟嘟采纳,获得10
4秒前
4秒前
6秒前
6秒前
罗浚航发布了新的文献求助10
7秒前
宇智波开心完成签到 ,获得积分10
7秒前
8秒前
海阔云高完成签到 ,获得积分10
8秒前
天生圣人完成签到,获得积分10
9秒前
gu发布了新的文献求助10
10秒前
super chan发布了新的文献求助10
13秒前
13秒前
Tree完成签到,获得积分20
18秒前
嘟嘟嘟发布了新的文献求助10
18秒前
什么什么发布了新的文献求助10
20秒前
情怀应助新羽采纳,获得10
21秒前
科研小生完成签到,获得积分10
24秒前
25秒前
赤安完成签到,获得积分10
25秒前
anne完成签到 ,获得积分10
28秒前
121呀发布了新的文献求助10
31秒前
天天快乐应助super chan采纳,获得10
31秒前
31秒前
33秒前
33秒前
35秒前
虚心的如曼完成签到 ,获得积分10
35秒前
Johann完成签到,获得积分10
35秒前
SciGPT应助莱奥寻风采纳,获得10
36秒前
shuang发布了新的文献求助10
36秒前
木九发布了新的文献求助20
37秒前
新羽发布了新的文献求助10
37秒前
youngman发布了新的文献求助10
38秒前
40秒前
42秒前
42秒前
43秒前
丝带完成签到,获得积分10
43秒前
钱德清发布了新的文献求助10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296