Creating spatially-detailed heterogeneous synthetic populations for agent-based microsimulation

计算机科学 人口 合成数据 匹配(统计) 贝叶斯概率 维数(图论) 微模拟 数据科学 数据挖掘 人工智能 工程类 运输工程 数学 社会学 人口学 统计 纯数学
作者
Meng Zhou,Jason Li,Rounaq Basu,Joseph Ferreira
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:91: 101717-101717 被引量:3
标识
DOI:10.1016/j.compenvurbsys.2021.101717
摘要

• We propose an integrated framework to create spatially detailed and heterogeneous synthetic populations. • Households and individuals are synthesized using multiple Bayesian Networks and Generalized Raking. • Spatial entities in the built environment are constructed via an ontology-based data-fusion approach. • Our framework outperforms traditional population synthesis methods in our Singapore case study. • Results show heterogeneous synthetic population with detailed and rich socio-spatial information. Agent-based models (ABMs) of urban systems have grown in popularity and complexity due to the widespread availability of high-performance computing resources and large data storage capabilities. Credible synthetic populations are crucial for the application of ABMs to understand urban phenomena. Although several (agent) population synthesis methods have been suggested over the years, the spatial dimension of synthetic populations has not received as much attention. This study addresses this myopic treatment of synthetic populations by creating two distinct components – agents and the built environment – that are integrated to form a ‘full’ spatially-detailed synthetic population. To generate agents, we used multiple Bayesian Networks (BN) to probabilistically draw pools from the microsample, followed by a Generalized Raking (GR) adjustment to match marginal controls. Using various measures, we demonstrate that our BN + GR framework outperforms more commonly used synthesis methods in both capturing the heterogeneity in the microsample and matching marginal controls. We also highlight the importance of accounting for heterogeneity by using separate type-specific models based on an explicitly defined household typology. For built environment synthesis, we generated various spatial entities such as buildings, housing units, establishments, and jobs at distinct spatial locations by fusing data from various spatial datasets. Their spatial distributions are found to effectively approximate the ‘real’ built environment in our study area. Our proposed framework can be used to generate a ‘full’ synthetic population for use in ABMs with more spatio-demographic heterogeneity than can otherwise be estimated using traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稀松完成签到,获得积分0
刚刚
Adam罗完成签到 ,获得积分10
1秒前
1秒前
1秒前
vdfr发布了新的文献求助10
1秒前
琳666发布了新的文献求助10
2秒前
2秒前
2秒前
TTYYI完成签到 ,获得积分10
2秒前
科研通AI6应助小立采纳,获得10
2秒前
英姑应助整齐醉冬采纳,获得10
2秒前
着急的罡发布了新的文献求助10
3秒前
4秒前
Tian发布了新的文献求助10
5秒前
天气好的话完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
咖褐完成签到 ,获得积分10
7秒前
mieyy完成签到,获得积分10
8秒前
Anna发布了新的文献求助10
8秒前
思源应助u深度采纳,获得10
8秒前
wangxy发布了新的文献求助10
8秒前
9秒前
情怀应助20074010181采纳,获得10
9秒前
科研通AI6应助着急的罡采纳,获得10
10秒前
轨迹应助严泠采纳,获得150
11秒前
单杨完成签到,获得积分10
11秒前
小洋完成签到 ,获得积分10
12秒前
紫津完成签到,获得积分10
12秒前
Jasper应助如意的小丸子采纳,获得10
12秒前
12秒前
尘中磨镜人完成签到,获得积分10
13秒前
lmj717完成签到,获得积分10
14秒前
大个应助filwasb采纳,获得10
14秒前
15秒前
Liu发布了新的文献求助10
15秒前
15秒前
今夕何夕完成签到,获得积分10
16秒前
一木张发布了新的文献求助10
17秒前
咖啡不苦发布了新的文献求助10
18秒前
科研通AI6应助wangxy采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488