Creating spatially-detailed heterogeneous synthetic populations for agent-based microsimulation

计算机科学 人口 合成数据 匹配(统计) 贝叶斯概率 维数(图论) 微模拟 数据科学 数据挖掘 人工智能 工程类 运输工程 数学 社会学 人口学 统计 纯数学
作者
Meng Zhou,Jason Li,Rounaq Basu,Joseph Ferreira
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:91: 101717-101717 被引量:3
标识
DOI:10.1016/j.compenvurbsys.2021.101717
摘要

• We propose an integrated framework to create spatially detailed and heterogeneous synthetic populations. • Households and individuals are synthesized using multiple Bayesian Networks and Generalized Raking. • Spatial entities in the built environment are constructed via an ontology-based data-fusion approach. • Our framework outperforms traditional population synthesis methods in our Singapore case study. • Results show heterogeneous synthetic population with detailed and rich socio-spatial information. Agent-based models (ABMs) of urban systems have grown in popularity and complexity due to the widespread availability of high-performance computing resources and large data storage capabilities. Credible synthetic populations are crucial for the application of ABMs to understand urban phenomena. Although several (agent) population synthesis methods have been suggested over the years, the spatial dimension of synthetic populations has not received as much attention. This study addresses this myopic treatment of synthetic populations by creating two distinct components – agents and the built environment – that are integrated to form a ‘full’ spatially-detailed synthetic population. To generate agents, we used multiple Bayesian Networks (BN) to probabilistically draw pools from the microsample, followed by a Generalized Raking (GR) adjustment to match marginal controls. Using various measures, we demonstrate that our BN + GR framework outperforms more commonly used synthesis methods in both capturing the heterogeneity in the microsample and matching marginal controls. We also highlight the importance of accounting for heterogeneity by using separate type-specific models based on an explicitly defined household typology. For built environment synthesis, we generated various spatial entities such as buildings, housing units, establishments, and jobs at distinct spatial locations by fusing data from various spatial datasets. Their spatial distributions are found to effectively approximate the ‘real’ built environment in our study area. Our proposed framework can be used to generate a ‘full’ synthetic population for use in ABMs with more spatio-demographic heterogeneity than can otherwise be estimated using traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guanzhuang完成签到,获得积分10
3秒前
一念之间完成签到,获得积分10
6秒前
健康幸福平安完成签到,获得积分10
9秒前
10秒前
linhante完成签到 ,获得积分10
11秒前
依霏发布了新的文献求助10
13秒前
谦让寻凝完成签到 ,获得积分10
16秒前
Miyya完成签到,获得积分10
18秒前
日暮炊烟完成签到 ,获得积分0
20秒前
23秒前
ZCL完成签到,获得积分10
24秒前
24秒前
积极的中蓝完成签到 ,获得积分10
26秒前
27秒前
nano发布了新的文献求助10
28秒前
眼睛大花生完成签到,获得积分10
29秒前
自转无风完成签到,获得积分10
29秒前
hahaha完成签到 ,获得积分10
29秒前
Ann完成签到,获得积分10
30秒前
4114完成签到,获得积分10
31秒前
依霏完成签到,获得积分10
31秒前
4141发布了新的文献求助10
31秒前
阿士大夫完成签到,获得积分10
31秒前
严芷荷发布了新的文献求助10
31秒前
小松鼠完成签到,获得积分10
33秒前
lige完成签到 ,获得积分10
34秒前
天真的耳机完成签到,获得积分10
35秒前
材1完成签到 ,获得积分10
35秒前
37秒前
杨tong完成签到 ,获得积分10
39秒前
41秒前
饱满酸奶完成签到,获得积分10
42秒前
大胆冬莲完成签到,获得积分10
43秒前
开心元霜完成签到 ,获得积分10
44秒前
合适醉蝶完成签到 ,获得积分10
44秒前
忆年慧逝发布了新的文献求助10
44秒前
45秒前
贝湾完成签到,获得积分10
45秒前
张广雪发布了新的文献求助30
46秒前
吉祥应助科研通管家采纳,获得30
46秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165059
求助须知:如何正确求助?哪些是违规求助? 2816125
关于积分的说明 7911486
捐赠科研通 2475817
什么是DOI,文献DOI怎么找? 1318378
科研通“疑难数据库(出版商)”最低求助积分说明 632116
版权声明 602370