Creating spatially-detailed heterogeneous synthetic populations for agent-based microsimulation

计算机科学 人口 合成数据 匹配(统计) 贝叶斯概率 维数(图论) 微模拟 数据科学 数据挖掘 人工智能 工程类 运输工程 数学 社会学 人口学 统计 纯数学
作者
Meng Zhou,Jason Li,Rounaq Basu,Joseph Ferreira
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:91: 101717-101717 被引量:3
标识
DOI:10.1016/j.compenvurbsys.2021.101717
摘要

• We propose an integrated framework to create spatially detailed and heterogeneous synthetic populations. • Households and individuals are synthesized using multiple Bayesian Networks and Generalized Raking. • Spatial entities in the built environment are constructed via an ontology-based data-fusion approach. • Our framework outperforms traditional population synthesis methods in our Singapore case study. • Results show heterogeneous synthetic population with detailed and rich socio-spatial information. Agent-based models (ABMs) of urban systems have grown in popularity and complexity due to the widespread availability of high-performance computing resources and large data storage capabilities. Credible synthetic populations are crucial for the application of ABMs to understand urban phenomena. Although several (agent) population synthesis methods have been suggested over the years, the spatial dimension of synthetic populations has not received as much attention. This study addresses this myopic treatment of synthetic populations by creating two distinct components – agents and the built environment – that are integrated to form a ‘full’ spatially-detailed synthetic population. To generate agents, we used multiple Bayesian Networks (BN) to probabilistically draw pools from the microsample, followed by a Generalized Raking (GR) adjustment to match marginal controls. Using various measures, we demonstrate that our BN + GR framework outperforms more commonly used synthesis methods in both capturing the heterogeneity in the microsample and matching marginal controls. We also highlight the importance of accounting for heterogeneity by using separate type-specific models based on an explicitly defined household typology. For built environment synthesis, we generated various spatial entities such as buildings, housing units, establishments, and jobs at distinct spatial locations by fusing data from various spatial datasets. Their spatial distributions are found to effectively approximate the ‘real’ built environment in our study area. Our proposed framework can be used to generate a ‘full’ synthetic population for use in ABMs with more spatio-demographic heterogeneity than can otherwise be estimated using traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从嘉发布了新的文献求助10
刚刚
华仔应助cxxxx采纳,获得10
刚刚
aa发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
初初遇你完成签到,获得积分10
3秒前
3秒前
4秒前
Akim应助李皮皮采纳,获得10
4秒前
婧婧发布了新的文献求助30
4秒前
丘比特应助gebob采纳,获得10
5秒前
精神是块骨头完成签到,获得积分10
5秒前
星辰大海应助Singularity采纳,获得10
7秒前
专注的问寒应助风清扬采纳,获得50
7秒前
不期而遇发布了新的文献求助10
9秒前
武勇发布了新的文献求助10
10秒前
wlywdb发布了新的文献求助10
11秒前
11秒前
12秒前
蓝天发布了新的文献求助10
13秒前
欣喜灯泡完成签到,获得积分10
14秒前
14秒前
无花果应助顺利的雪莲采纳,获得10
14秒前
15秒前
NexusExplorer应助李墩墩采纳,获得10
17秒前
爱吃炸鸡的火鸡面完成签到 ,获得积分10
17秒前
18秒前
自觉的糖豆完成签到 ,获得积分20
18秒前
gebob发布了新的文献求助10
19秒前
zl987发布了新的文献求助10
19秒前
yatou327完成签到,获得积分10
20秒前
梁哲铭完成签到,获得积分10
21秒前
yuer完成签到,获得积分20
22秒前
量子星尘发布了新的文献求助10
22秒前
dew应助Jenny采纳,获得10
24秒前
yuer发布了新的文献求助10
24秒前
Jasper应助自由的元冬采纳,获得30
25秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
Liyf给Liyf的求助进行了留言
27秒前
研友_VZG7GZ应助yly采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729103
求助须知:如何正确求助?哪些是违规求助? 5316038
关于积分的说明 15315703
捐赠科研通 4876092
什么是DOI,文献DOI怎么找? 2619225
邀请新用户注册赠送积分活动 1568759
关于科研通互助平台的介绍 1525277