A point cloud-based deep learning strategy for protein–ligand binding affinity prediction

点式的 人工智能 点云 计算机科学 蛋白质配体 水准点(测量) 机器学习 感知器 配体(生物化学) 深度学习 算法 人工神经网络 化学 数学 地理 生物化学 数学分析 受体 大地测量学
作者
Yeji Wang,Shuo Wu,Yanwen Duan,Yong Huang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:21
标识
DOI:10.1093/bib/bbab474
摘要

There is great interest to develop artificial intelligence-based protein-ligand binding affinity models due to their immense applications in drug discovery. In this paper, PointNet and PointTransformer, two pointwise multi-layer perceptrons have been applied for protein-ligand binding affinity prediction for the first time. Three-dimensional point clouds could be rapidly generated from PDBbind-2016 with 3772 and 11 327 individual point clouds derived from the refined or/and general sets, respectively. These point clouds (the refined or the extended set) were used to train PointNet or PointTransformer, resulting in protein-ligand binding affinity prediction models with Pearson correlation coefficients R = 0.795 or 0.833 from the extended data set, respectively, based on the CASF-2016 benchmark test. The analysis of parameters suggests that the two deep learning models were capable to learn many interactions between proteins and their ligands, and some key atoms for the interactions could be visualized. The protein-ligand interaction features learned by PointTransformer could be further adapted for the XGBoost-based machine learning algorithm, resulting in prediction models with an average Rp of 0.827, which is on par with state-of-the-art machine learning models. These results suggest that the point clouds derived from PDBbind data sets are useful to evaluate the performance of 3D point clouds-centered deep learning algorithms, which could learn atomic features of protein-ligand interactions from natural evolution or medicinal chemistry and thus have wide applications in chemistry and biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼应助卓垚采纳,获得20
1秒前
1秒前
慕青应助lxy采纳,获得10
1秒前
2秒前
Felix发布了新的文献求助10
3秒前
Erin发布了新的文献求助10
3秒前
lilili完成签到,获得积分10
4秒前
张婉婉完成签到,获得积分10
4秒前
新明完成签到,获得积分10
6秒前
8秒前
yao发布了新的文献求助10
8秒前
9秒前
9秒前
rainsy发布了新的文献求助10
11秒前
毛豆应助诚心的书琴采纳,获得10
11秒前
11秒前
Myrrha完成签到,获得积分10
12秒前
Akim应助见青山采纳,获得10
12秒前
13秒前
77发布了新的文献求助10
15秒前
15秒前
16秒前
Alex应助ANHYPNIA采纳,获得10
16秒前
细心飞鸟发布了新的文献求助10
16秒前
思源应助rainsy采纳,获得10
17秒前
猪猪hero应助88888采纳,获得30
18秒前
自然访天发布了新的文献求助30
18秒前
强哥很强完成签到,获得积分10
19秒前
兴奋一兰发布了新的文献求助60
20秒前
21秒前
卡西莫多完成签到,获得积分10
21秒前
淡定草丛完成签到 ,获得积分10
22秒前
斩妖凉完成签到,获得积分10
22秒前
呆驴遛娃关注了科研通微信公众号
23秒前
yao完成签到,获得积分10
24秒前
在水一方应助跳跃野狼采纳,获得10
25秒前
ding应助一个可爱玉采纳,获得10
26秒前
爱吃玉米完成签到,获得积分10
26秒前
无花果应助964230130采纳,获得10
27秒前
pear完成签到,获得积分20
27秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464787
求助须知:如何正确求助?哪些是违规求助? 3058139
关于积分的说明 9059880
捐赠科研通 2748354
什么是DOI,文献DOI怎么找? 1507839
科研通“疑难数据库(出版商)”最低求助积分说明 696733
邀请新用户注册赠送积分活动 696362