Abstract 13957: Predicting In-Hospital Mortality Among Patients Hospitalized With Heart Failure Using a Convolutional Neural Network and Transfer Learning on a Single Admission Chest X-Ray

医学 心力衰竭 卷积神经网络 学习迁移 住院 内科学 心脏病学 急诊医学 人工智能 计算机科学
作者
David Hidalgo-Goto,Lovedeep Dhingra,Veer Sangha,Evangelos K. Oikonomou,Rohan Khera
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:144 (Suppl_1)
标识
DOI:10.1161/circ.144.suppl_1.13957
摘要

Background: Early identification of mortality risk among patients hospitalized with heart failure (HF) is critical for therapeutic decisions. Early warning systems have relied on large datasets with frequent outcomes. We evaluate the use of transfer learning to use a single chest x-ray obtained at presentation in a small sample of HF hospitalizations to predict in-hospital mortality. Methods: In MIMIC-IV - a publicly available electronic health record dataset of consecutive hospitalizations from the ED or those requiring ≥1 day of ICU stay during 2008-2019 - we identified all hospitalizations with a primary diagnosis of HF. We combined this with chest x-rays (CXRs) drawn from the MIMIC-CXR dataset with available radiographic labels. We evaluated the risk of mortality based on CXR using a convolutional neural network (CNN) based on the Efficient Net B3 architecture. We compared 2 strategies - (1) training on primary HF hospitalizations directly for mortality risk (direct learning), or (2) pre-training the model on a non-mortality radiographic label, before training for mortality (transfer learning) (Fig A). Results: There were 3604 hospitalizations with a primary diagnosis of HF (mean age 70.8 years, 48% women) who had a corresponding CXR, of whom 87 (2.4%) died in the hospital. There were 102,551 hospitalizations without a diagnosis of HF with a CXR. The CNN model developed on HF data (60% training, 20% validation, 20% test) led to modest predictive performance (AUROC 0.67) for mortality (Fig B). In the second model that was pre-trained on identifying pleural effusion on CXRs in the absence of a HF diagnosis, and was tuned on the HF data for mortality, was associated with a large predictive gain (AUROC 0.80) (Fig B). Conclusion: A single CXR can accurately classify the mortality risk of patients with HF with high model discrimination. Transfer learning allows the use of unstructured data inputs in predictive models for small datasets and few inputs.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
00发布了新的文献求助10
刚刚
小勉发布了新的文献求助10
1秒前
1秒前
酸菜秋刀鱼应助粒粒采纳,获得10
1秒前
1秒前
LZN完成签到,获得积分10
1秒前
2秒前
2秒前
Dank1ng完成签到 ,获得积分10
2秒前
2秒前
long发布了新的文献求助10
2秒前
3秒前
852应助科研啊科研采纳,获得10
3秒前
毛毛完成签到,获得积分10
4秒前
科研通AI2S应助半糖采纳,获得10
4秒前
4秒前
Ava应助浮云采纳,获得10
4秒前
5秒前
阿巴完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
汉克爱学习完成签到,获得积分10
7秒前
坚强傲儿发布了新的文献求助10
7秒前
7秒前
ygr应助路弈采纳,获得20
8秒前
8秒前
GXR发布了新的文献求助10
8秒前
long完成签到,获得积分10
8秒前
9秒前
阿巴发布了新的文献求助10
9秒前
小二郎应助PONY采纳,获得10
9秒前
科研通AI2S应助PONY采纳,获得10
9秒前
小蘑菇应助PONY采纳,获得10
9秒前
小二郎应助PONY采纳,获得10
9秒前
10秒前
天使小五哥应助君君采纳,获得10
11秒前
11秒前
研友_8KAP5n发布了新的文献求助10
11秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411009
求助须知:如何正确求助?哪些是违规求助? 3014485
关于积分的说明 8863924
捐赠科研通 2701937
什么是DOI,文献DOI怎么找? 1481349
科研通“疑难数据库(出版商)”最低求助积分说明 684818
邀请新用户注册赠送积分活动 679320