Abstract 13957: Predicting In-Hospital Mortality Among Patients Hospitalized With Heart Failure Using a Convolutional Neural Network and Transfer Learning on a Single Admission Chest X-Ray

医学 心力衰竭 卷积神经网络 学习迁移 住院 内科学 心脏病学 急诊医学 人工智能 计算机科学
作者
David Hidalgo-Goto,Lovedeep Dhingra,Veer Sangha,Evangelos K. Oikonomou,Rohan Khera
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:144 (Suppl_1)
标识
DOI:10.1161/circ.144.suppl_1.13957
摘要

Background: Early identification of mortality risk among patients hospitalized with heart failure (HF) is critical for therapeutic decisions. Early warning systems have relied on large datasets with frequent outcomes. We evaluate the use of transfer learning to use a single chest x-ray obtained at presentation in a small sample of HF hospitalizations to predict in-hospital mortality. Methods: In MIMIC-IV - a publicly available electronic health record dataset of consecutive hospitalizations from the ED or those requiring ≥1 day of ICU stay during 2008-2019 - we identified all hospitalizations with a primary diagnosis of HF. We combined this with chest x-rays (CXRs) drawn from the MIMIC-CXR dataset with available radiographic labels. We evaluated the risk of mortality based on CXR using a convolutional neural network (CNN) based on the Efficient Net B3 architecture. We compared 2 strategies - (1) training on primary HF hospitalizations directly for mortality risk (direct learning), or (2) pre-training the model on a non-mortality radiographic label, before training for mortality (transfer learning) (Fig A). Results: There were 3604 hospitalizations with a primary diagnosis of HF (mean age 70.8 years, 48% women) who had a corresponding CXR, of whom 87 (2.4%) died in the hospital. There were 102,551 hospitalizations without a diagnosis of HF with a CXR. The CNN model developed on HF data (60% training, 20% validation, 20% test) led to modest predictive performance (AUROC 0.67) for mortality (Fig B). In the second model that was pre-trained on identifying pleural effusion on CXRs in the absence of a HF diagnosis, and was tuned on the HF data for mortality, was associated with a large predictive gain (AUROC 0.80) (Fig B). Conclusion: A single CXR can accurately classify the mortality risk of patients with HF with high model discrimination. Transfer learning allows the use of unstructured data inputs in predictive models for small datasets and few inputs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助wxy采纳,获得10
刚刚
sparrow完成签到,获得积分10
刚刚
lim发布了新的文献求助10
刚刚
zeran完成签到 ,获得积分10
1秒前
万能图书馆应助桐桐啊采纳,获得10
2秒前
迷路向松完成签到,获得积分10
4秒前
m1发布了新的文献求助10
4秒前
沙糖桔完成签到,获得积分10
4秒前
007完成签到 ,获得积分10
6秒前
lilongcheng完成签到,获得积分10
7秒前
Dongjie完成签到,获得积分10
8秒前
乐乐应助耍酷的曼青采纳,获得10
8秒前
道客郭完成签到,获得积分10
8秒前
11秒前
SYLH应助道客郭采纳,获得10
12秒前
15秒前
16秒前
上官老黑发布了新的文献求助10
16秒前
善学以致用应助Justinliken采纳,获得10
17秒前
17秒前
桐桐啊完成签到,获得积分10
17秒前
桐桐啊发布了新的文献求助10
21秒前
如意的尔竹关注了科研通微信公众号
22秒前
墨尘发布了新的文献求助10
22秒前
MchemG应助幸福采纳,获得10
22秒前
Ava应助壮观的芮采纳,获得10
23秒前
23秒前
Jasper应助卢建烨采纳,获得10
23秒前
23秒前
隐形的邦布完成签到,获得积分10
25秒前
26秒前
28秒前
兮沐发布了新的文献求助10
28秒前
wxy发布了新的文献求助10
28秒前
28秒前
科研通AI5应助zhuhongxia采纳,获得10
29秒前
独特的友琴完成签到 ,获得积分10
30秒前
修狗狗完成签到,获得积分10
31秒前
31秒前
跳跃早晨发布了新的文献求助50
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773187
求助须知:如何正确求助?哪些是违规求助? 3318834
关于积分的说明 10191774
捐赠科研通 3033468
什么是DOI,文献DOI怎么找? 1664420
邀请新用户注册赠送积分活动 796239
科研通“疑难数据库(出版商)”最低求助积分说明 757330