聚氨酯
化学工程
材料科学
触变性
流变学
纳米颗粒
双水相体系
水溶液
相(物质)
高分子化学
化学
有机化学
纳米技术
复合材料
工程类
作者
Jianhui Wu,Xin Guan,Chunhua Wang,To Ngai,Wei Lin
标识
DOI:10.1016/j.jcis.2021.11.156
摘要
Waterborne polyurethane (WPU) is a common colloidal dispersion that can aggregate in the aqueous phase to form nanoparticles with hydrophobic polyurethane chains as the core and hydrophilic ionic groups as the shell. Considering their structure and pH-responsive functional groups, WPU nanoparticles could be ideal particulate emulsifiers for preparing pH-responsive Pickering high internal phase emulsions (HIPEs).A series of anionic WPU with different content of 2,2-bis(hydroxymethyl)propionic acid (DMPA) side chains were synthesized via a polyaddition reaction. The DMPA content, size, ζ-potential, and interfacial behaviors of WPU were then investigated. Furthermore, the effects of particle concentration, internal phase fraction (ϕ), oil type, and pH values on the Pickering HIPEs' morphology, stability, and rheological behaviors were systematically studied. Finally, we demonstrated the emulsification-demulsification process of WPU-stabilized Pickering HIPEs and discussed its mechanism.Oil-in-water (O/W) Pickering HIPEs with tailored morphology and excellent pH-responsiveness were prepared from anionic WPU nanoparticles. The WPU concentration, ϕ, and oil type had a large impact on the formation and mean droplet size of the WPU-stabilized emulsions. Rheology analysis demonstrated that the strictly limited movement of droplets endowed the WPU-stabilized HIPEs with high stability, shear sensitivity, and excellent thixotropic recovery. By simply changing the aqueous-phase pH value, the WPU-stabilized HIPEs could undergo more than ten emulsification-demulsification cycles, as the physical and interfacial properties of WPU nanoparticles were pH-dependent. The excellent performance of the WPU-stabilized pH-responsive Pickering HIPEs exhibited their potential practical applications, such as for oil transportation and recovery, emulsion polymerization, and heterogeneous catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI