Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves

内化 纳米颗粒 烟草 纳米生物技术 纳米技术 核糖核酸 生物物理学 生物分子 植物细胞 小干扰RNA 胶体金 细胞生物学 材料科学 化学 生物 细胞 基因 生物化学
作者
Huan Zhang,Natalie S. Goh,Jeffrey W. Wang,Rebecca L. Pinals,Eduardo González‐Grandío,Gözde S. Demirer,Salwan Butrus,Sirine C. Fakra,Antonio Del Rio Flores,Rui Zhai,Bin Zhao,So‐Jung Park,Markita P. Landry
出处
期刊:Nature Nanotechnology [Nature Portfolio]
卷期号:17 (2): 197-205 被引量:141
标识
DOI:10.1038/s41565-021-01018-8
摘要

Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助haoran_man采纳,获得10
刚刚
1秒前
1秒前
1秒前
宋灵竹发布了新的文献求助10
2秒前
鸭鸭发布了新的文献求助10
2秒前
霸气的小成成完成签到,获得积分10
3秒前
刘炜完成签到,获得积分10
3秒前
内向人生完成签到,获得积分10
3秒前
嘻嘻叮完成签到,获得积分10
3秒前
Amy发布了新的文献求助10
4秒前
lhx完成签到,获得积分10
5秒前
wr0112发布了新的文献求助10
6秒前
8秒前
smgua完成签到,获得积分10
9秒前
李健的粉丝团团长应助ww采纳,获得10
9秒前
11秒前
紫薇的舔狗完成签到,获得积分10
11秒前
鲸鱼打滚完成签到 ,获得积分10
13秒前
深深发布了新的文献求助10
14秒前
14秒前
思源应助张强采纳,获得10
15秒前
嘿哈完成签到,获得积分10
16秒前
隐形曼青应助闫译文采纳,获得10
16秒前
活泼忆丹完成签到,获得积分10
16秒前
doewi完成签到,获得积分10
17秒前
流光广陵发布了新的文献求助150
17秒前
17秒前
17秒前
18秒前
18秒前
11完成签到,获得积分10
19秒前
tcl1998完成签到,获得积分10
20秒前
内向绿海发布了新的文献求助10
21秒前
贝贝发布了新的文献求助30
21秒前
我是老大应助菜菜采纳,获得50
23秒前
ww发布了新的文献求助10
23秒前
23秒前
Gilana应助大树下的小鸟采纳,获得10
24秒前
任白993发布了新的文献求助10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762181
求助须知:如何正确求助?哪些是违规求助? 3305970
关于积分的说明 10136428
捐赠科研通 3020129
什么是DOI,文献DOI怎么找? 1658756
邀请新用户注册赠送积分活动 792088
科研通“疑难数据库(出版商)”最低求助积分说明 754840