多光谱图像
激光雷达
计算机科学
贝叶斯概率
人工智能
计算机视觉
遥感
模式识别(心理学)
地质学
作者
Abderrahim Halimi,Aurora Maccarone,Robert A. Lamb,Gerald S. Buller,Stephen McLaughlin
出处
期刊:IEEE transactions on computational imaging
日期:2021-01-01
卷期号:7: 961-974
被引量:30
标识
DOI:10.1109/tci.2021.3111572
摘要
3D Lidar imaging can be a challenging modality when using multiple wavelengths, or when imaging in high noise environments (e.g., imaging through obscurants). This paper presents a hierarchical Bayesian algorithm for the robust reconstruction of multispectral single-photon Lidar data in such environments. The algorithm exploits multi-scale information to provide robust depth and reflectivity estimates together with their uncertainties to help with decision making. The proposed weight-based strategy allows the use of available guide information that can be obtained by using state-of-the-art learning based algorithms. The proposed Bayesian model and its estimation algorithm are validated on both synthetic and real images showing competitive results regarding the quality of the inferences and the computational complexity when compared to the state-of-the-art algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI