流动电池
膜
材料科学
法拉第效率
电导率
钒
化学工程
质子
质子交换膜燃料电池
电池(电)
电极
电化学
化学
物理化学
生物化学
功率(物理)
物理
量子力学
工程类
冶金
作者
Xin Li,Dezhu Zhang,Kai Qu,Yuqin Lu,Yixing Wang,Kang Huang,Zhaohui Wang,Wanqin Jin,Zhi Xu
标识
DOI:10.1002/adfm.202104629
摘要
Abstract Membrane with ordered channels is the key to controlling ion sieving and proton conductivity in flow batteries. However, it remains a great challenge for finely controlling the nanochannels of polymeric membranes. Herein, two types of acid‐stable Zr‐metal organic framework (MOF‐801 and MOF‐808) with variable pore structures and channel properties are introduced as fillers into a non‐fluorinated sulfonated poly (ether ether ketone) (SPEEK). The membrane incorporated with MOF‐801 of a smaller triangular window (≈3.5 Å) successfully translates the molecular sieving property into the flow battery membrane, resulting in enhanced coulombic efficiency (98.5–99.2%) at 40–120 mA cm −2 compared with the pristine SPEEK membrane (97.1–98.5%). In contrast, more protophilic internal interconnected channels of MOF‐808 yield faster proton highway, leading to a significant increase of voltage efficiency (93.7–84.1%) at 40–120 mA cm −2 compared with the pristine SPEEK membrane (91.7–78.9%). By regulating the ion sieving and proton conductivity, MOF‐801/MOF‐808 binary composite membrane exhibits synchronously improved performance in the vanadium redox flow battery system. The revealed structure–property relationship in the Zr‐MOFs‐based membranes provides a general guideline to design new proton exchange membranes with ordered channels for flow battery application.
科研通智能强力驱动
Strongly Powered by AbleSci AI