A preliminary investigation for assessing attention levels forMassive Online Open Courseslearning environment usingEEGsignals: An experimental study

计算机科学 学习环境 人工智能 认知 脑电图 支持向量机 在线学习 机器学习 多媒体 心理学 数学教育 精神科 神经科学
作者
Swati Aggarwal,Mohit Lamba,Kandarp Verma,Siddharth Khuttan,Hitesh Gautam
出处
期刊:Human behavior and emerging technologies [Wiley]
卷期号:3 (5): 933-941 被引量:14
标识
DOI:10.1002/hbe2.274
摘要

Rapid progress in expansion of the internet services have provided an alternative way for learning other than the traditional classroom learning. Due to the availability of multiple learning options, evaluating each option and judging the best use case plays a vital role. One of the most important characteristics that a human brain utilizes during process of learning is cognition that involves attention and retention. Student's attention span and situational interests during learning have always been a subject matter of research. Apart from classroom learning, e-learning (MOOC based learning) is the other most preferred way of learning. Therefore, the objective of this study is to assess attention levels of a learner in MOOC (Massive Open Online Courses) learning environments and compare it with conventional classroom learning using brain signals. The proposed method captures electroencephalogram (EEG) frequency bands of different subjects while going through a short lecture in MOOC/e-learning environment and classroom environment. The captured data points were annotated for attentiveness manually by referring to the subject's feedback and video clips. Machine learning classification model of support vector machines (SVM) was used to classify student's mental state as attentive or nonattentive. Promising results were obtained and experiments revealed that higher attention levels were maintained during MOOC learning environment in comparison to traditional learning approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肥皂剧发布了新的文献求助10
1秒前
susu发布了新的文献求助10
2秒前
丰富的莛完成签到,获得积分10
2秒前
916应助nabla采纳,获得10
2秒前
李健应助TT提采纳,获得10
4秒前
ww发布了新的文献求助10
4秒前
杨梅关注了科研通微信公众号
4秒前
5秒前
七个小矮人完成签到,获得积分10
6秒前
丰富的莛发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
kuichen完成签到,获得积分10
6秒前
泓凯骏完成签到 ,获得积分10
7秒前
7秒前
田様应助猪猪hero采纳,获得10
7秒前
9秒前
所所应助fordream采纳,获得10
10秒前
CipherSage应助fordream采纳,获得10
10秒前
11秒前
今后应助含糊的冰安采纳,获得10
12秒前
BINGBING1230发布了新的文献求助30
12秒前
12秒前
LHF发布了新的文献求助10
14秒前
酷波er应助开心不评采纳,获得10
15秒前
15秒前
脑洞疼应助BINGBING1230采纳,获得10
16秒前
杨梅发布了新的文献求助10
16秒前
Wang完成签到,获得积分10
17秒前
18秒前
18秒前
肥皂剧完成签到,获得积分10
18秒前
18秒前
fordream完成签到,获得积分10
19秒前
never发布了新的文献求助10
19秒前
花海完成签到,获得积分10
19秒前
huhu完成签到 ,获得积分10
19秒前
猪猪hero发布了新的文献求助10
19秒前
20秒前
咋取名字完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315