A preliminary investigation for assessing attention levels forMassive Online Open Courseslearning environment usingEEGsignals: An experimental study

计算机科学 学习环境 人工智能 认知 脑电图 支持向量机 在线学习 机器学习 多媒体 心理学 数学教育 精神科 神经科学
作者
Swati Aggarwal,Mohit Lamba,Kandarp Verma,Siddharth Khuttan,Hitesh Gautam
出处
期刊:Human behavior and emerging technologies [Wiley]
卷期号:3 (5): 933-941 被引量:14
标识
DOI:10.1002/hbe2.274
摘要

Rapid progress in expansion of the internet services have provided an alternative way for learning other than the traditional classroom learning. Due to the availability of multiple learning options, evaluating each option and judging the best use case plays a vital role. One of the most important characteristics that a human brain utilizes during process of learning is cognition that involves attention and retention. Student's attention span and situational interests during learning have always been a subject matter of research. Apart from classroom learning, e-learning (MOOC based learning) is the other most preferred way of learning. Therefore, the objective of this study is to assess attention levels of a learner in MOOC (Massive Open Online Courses) learning environments and compare it with conventional classroom learning using brain signals. The proposed method captures electroencephalogram (EEG) frequency bands of different subjects while going through a short lecture in MOOC/e-learning environment and classroom environment. The captured data points were annotated for attentiveness manually by referring to the subject's feedback and video clips. Machine learning classification model of support vector machines (SVM) was used to classify student's mental state as attentive or nonattentive. Promising results were obtained and experiments revealed that higher attention levels were maintained during MOOC learning environment in comparison to traditional learning approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金熙美发布了新的文献求助10
刚刚
2秒前
2秒前
自信的忆文完成签到,获得积分10
3秒前
surain发布了新的文献求助10
3秒前
xf完成签到,获得积分10
4秒前
5秒前
5秒前
啦啦啦发布了新的文献求助10
5秒前
文刀发布了新的文献求助10
6秒前
qin发布了新的文献求助10
6秒前
约翰森尼亚大使完成签到,获得积分10
7秒前
7秒前
轩辕远航完成签到 ,获得积分10
8秒前
z.完成签到,获得积分10
8秒前
香蕉以菱完成签到 ,获得积分10
8秒前
丘比特应助小宝爸爸采纳,获得10
10秒前
洗剪吹发布了新的文献求助10
10秒前
桔梗发布了新的文献求助10
10秒前
英姑应助YI点半的飞机场采纳,获得10
13秒前
墨痕完成签到,获得积分10
13秒前
13秒前
15秒前
xixi完成签到 ,获得积分10
16秒前
krislang完成签到,获得积分10
16秒前
CodeCraft应助潇洒的冰烟采纳,获得10
17秒前
19秒前
19秒前
风筝鱼发布了新的文献求助10
20秒前
20秒前
20秒前
文刀完成签到,获得积分10
21秒前
23秒前
xi发布了新的文献求助10
24秒前
青衣北风发布了新的文献求助10
24秒前
25秒前
LLL发布了新的文献求助30
26秒前
roleplay发布了新的文献求助10
26秒前
李爱国应助SCi归属者采纳,获得10
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825