神经毒性
莫里斯水上航行任务
突触素
海马体
超氧化物歧化酶
丙二醛
化学
罗亚
内分泌学
药理学
内科学
医学
氧化应激
生物化学
信号转导
毒性
免疫组织化学
作者
XiaoTong Xiang,Xin Wang,Shiyu Jin,Jie Hu,Yumei Wu,Yueyue Li,Xian Wu
标识
DOI:10.1016/j.pnpbp.2021.110423
摘要
The accumulation of amyloid-β (Aβ) peptides in the brain is considered to be the initial event in the Alzheimer's disease (AD). Neurotoxicity mediated by Aβ has been demonstrated to damage the cognitive function. In the present study, we sought to determine the effects of O-1602, a specific G-protein coupled receptor 55 (GPR55) agonist, on the impairment of learning and memory induced by intracerebroventricular (i.c.v.) of Aβ1-42 (400 pmol/mouse) in mice. Our results showed that i.c.v. injection of aggregated Aβ1-42 into the brain of mice resulted in cognitive impairment and neurotoxicity. In contrast, O-1602 (2.0 or 4.0 μg/mouse, i.c.v.) can improve memory impairment induced by Aβ1-42 in the Morris water maze (MWM), and novel object recognition (NOR) tests. Besides, we found that O-1602 reduced the activity of β-secretase 1 (BACE1) and the level of soluble Aβ1-42 in the hippocampus and frontal cortex. Importantly, O-1602 treatment reversed Aβ1-42-induced GPR55 down-regulation, decreased pro-inflammatory cytokines, and the level of malondialdehyde (MDA), increased the levels of glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), as well as suppressed apoptosis as indicated by decreased TUNEL-positive cells, and increased the ratio of Bcl-2/Bax. O-1602 treatment also pronouncedly ameliorated synaptic dysfunction by promoting the upregulation of PSD-95 and synaptophysin (SYN) proteins. Moreover, O-1602 concurrently down regulated the protein levels of RhoA, and ROCK2, the critical proteins in the RhoA/ROCK2 pathway. This study indicates that O-1602 may reverse Aβ1-42-induced cognitive impairment and neurotoxicity in mice by inhibiting RhoA/ROCK2 pathway. Taken together, these findings suggest that GPR55 could be a novel and promising target for the treatment of AD.
科研通智能强力驱动
Strongly Powered by AbleSci AI