HighlyEfficient Degradation of Persistent Pollutantswith 3D Nanocone TiO2‑Based Photoelectrocatalysis

降级(电信) 催化作用 纳米棒 矿化(土壤科学) 污染物 材料科学 锥面 化学工程 二氧化钛 纳米技术 化学 复合材料 计算机科学 工程类 电信 有机化学 生物化学 氮气
作者
Rui Song,Haibo Chi,Qinghua Ma,Dongfeng Li,Xiaomei Wang,Wensheng Gao,Hao Wang,Xiuli Wang,Zelong Li,Can Li
标识
DOI:10.1021/jacs.1c05008.s001
摘要

Photoelectrocatalytic (PEC) degradation of organic pollutants into CO2 and H2O is a promising strategy for addressing ever-growing environmental problems. Titanium dioxide (TiO2) has been widely studied because of its good performance and environmental benignancy; however, the PEC activity of TiO2 catalyst is substantially limited due to its fast electron–hole recombination. Herein, we report a TiO2 nanocone-based photoelectrocatalyst with superior degradation performance and outstanding durability. The unique conical catalyst can boost the PEC degradation of 4-chlorophenol (4-CP) with 99% degradation efficiency and higher than 55% mineralization efficiency at a concentration of 20 ppm. The normalized apparent rate constant of a nanocone catalyst is 5.05 h–1 g–1 m2, which is 3 times that of a nanorod catalyst and 6 times that of an aggregated particle catalyst, respectively. Further characterizations reveal that the conical morphology of TiO2 can make photogenerated charges separate and transfer more efficiently, resulting in outstanding PEC activity. Moreover, computational fluid dynamics simulations indicate that a three-dimensional conical structure is beneficial for mass transfer. This work highlights that tuning the morphology of a photoelectrocatalyst at the nanometer scale not only promotes the charge transfer but also facilitates the mass transportation, which jointly enhance the PEC performance in the degradation of persistent pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助标致小伙采纳,获得30
刚刚
有风发布了新的文献求助10
刚刚
刚刚
路在脚下完成签到 ,获得积分10
刚刚
bkagyin应助GOODYUE采纳,获得10
1秒前
Jasper应助彩色的蓝天采纳,获得10
1秒前
詹严青发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
郭翔完成签到,获得积分10
2秒前
Yeong发布了新的文献求助10
3秒前
jh完成签到 ,获得积分10
3秒前
syq完成签到,获得积分10
4秒前
sfw完成签到,获得积分10
4秒前
5秒前
光亮面包完成签到 ,获得积分10
5秒前
小猪啵比完成签到 ,获得积分10
5秒前
小智发布了新的文献求助10
5秒前
毛慢慢发布了新的文献求助10
5秒前
lilac应助1234567890采纳,获得10
6秒前
OYE发布了新的文献求助10
6秒前
木木发布了新的文献求助10
7秒前
zhy完成签到,获得积分10
8秒前
8秒前
自由的刺猬完成签到,获得积分20
8秒前
潇洒甜瓜发布了新的文献求助10
9秒前
jessie完成签到,获得积分10
9秒前
化学胖子完成签到,获得积分10
9秒前
10秒前
CTL关闭了CTL文献求助
10秒前
詹严青完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
顾矜应助Long采纳,获得10
10秒前
11秒前
木木完成签到,获得积分20
11秒前
爆米花应助1ssd采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759