Multiscale Deep Neural Network for Obstructive Sleep Apnea Detection Using RR Interval From Single-Lead ECG Signal

模式识别(心理学) 计算机科学 卷积神经网络 人工智能 深度学习 人工神经网络 睡眠呼吸暂停 特征提取 阻塞性睡眠呼吸暂停 医学 心脏病学
作者
Qi Shen,Hengji Qin,Keming Wei,Guanzheng Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:102
标识
DOI:10.1109/tim.2021.3062414
摘要

The detection of obstructive sleep apnea (OSA) based on single-lead electrocardiogram (ECG) is better suited to the noninvasive needs and hardware conditions of wearable mobile devices. From previous ECG-based OSA detection methods, we can find that deep learning methods have shown great potential and advantages. However, due to the nonstationarity of sympathetic nerve signals and the complex characteristics of heart rate variability (HRV), the neural network under a single scale cannot effectively capture the features of HRV. In this study, an OSA detection method based on a multiscale dilation attention 1-D convolutional neural network (MSDA-1DCNN) and a weighted-loss time-dependent (WLTD) classification model were proposed. The introduction of dilated convolution effectively balanced the relationship between model parameters and performance. Attention mechanism technology modified the multiscale features after fusion and improved the weight of features under important channels. In the final classification part of the network, the combination of weighted cross-entropy loss function and hidden Markov model effectively alleviated the problem of data imbalance and improved the classification accuracy of the classifier. In segment identification, the accuracy, sensitivity, and specificity of the proposed method are 89.4%, 89.8%, and 89.1%, respectively; as for individual identification, the accuracy of that achieved 100%. The results demonstrated that the method proposed in this study can identify sleep apnea accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九月秋完成签到,获得积分10
1秒前
zhao完成签到,获得积分10
1秒前
乐乐应助whq531608采纳,获得10
2秒前
慈祥的爆米花应助454采纳,获得10
3秒前
REN发布了新的文献求助100
5秒前
5秒前
1233333发布了新的文献求助10
6秒前
思源应助zhangxr采纳,获得10
8秒前
8秒前
10秒前
俭朴的惊蛰完成签到,获得积分10
10秒前
qqq发布了新的文献求助10
12秒前
清爽元霜关注了科研通微信公众号
12秒前
zhao发布了新的文献求助30
13秒前
13秒前
motingping发布了新的文献求助10
14秒前
15秒前
hulibilibi完成签到,获得积分20
15秒前
斯文败类应助傢誠采纳,获得10
15秒前
Fort发布了新的文献求助10
18秒前
19秒前
xcydd发布了新的文献求助10
20秒前
班小班完成签到,获得积分10
20秒前
21秒前
21秒前
科研通AI5应助Timing侠采纳,获得10
22秒前
23秒前
motingping完成签到,获得积分10
23秒前
有魅力的小蜜蜂完成签到,获得积分10
24秒前
莫西莫西完成签到 ,获得积分10
25秒前
26秒前
26秒前
26秒前
科研通AI5应助A爷有特点采纳,获得10
28秒前
28秒前
muhtar发布了新的文献求助10
28秒前
大气的懒羊羊完成签到,获得积分10
28秒前
科研通AI5应助xcydd采纳,获得10
31秒前
晚晴发布了新的文献求助10
32秒前
Hanmos3624完成签到,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669904
求助须知:如何正确求助?哪些是违规求助? 3227318
关于积分的说明 9775073
捐赠科研通 2937457
什么是DOI,文献DOI怎么找? 1609351
邀请新用户注册赠送积分活动 760256
科研通“疑难数据库(出版商)”最低求助积分说明 735765